










n	ey pai	a			101	LUA								
						Key parameters for LCA & LCC								
		SIESS 15 (a. 1991) Technology georferature photomatics groups												
_		_		Year 2025		Year 2050								
	Technology	10-51	ribbon-	CdTe	UHE	Oystaline-Si	CdTe	UHE						
_	Laver thickness (µm)	100	5i 150	core	(conc./III-V cells)	100	cure	(conc./III-V cells)						
	% Avg. module efficiency	22	39	10	25	25	22	50						
OFTEMISTIC	Module Metime (yrs)		15	30	30	50	40	45	 energy/material flow 					
8	Avg. system efficiency			90			95							
VERY OFT	Material and energy flows source	Crystaklear 2005		Data from Industry	Pthenakis et al 2006. Mohr et al. 2006	Crystaklmar 2005	Data from Industry	Pthenakis et al 2006. Moliv et al. 2006	 layer thickness 					
2	Estimation	Process / and ener of curren	py1 -20%	Process materials and energy: -20% of current data	Process materials and energy: -25% of current data	Process mutarials and energy: -20% of current data	Process materials and energy: -30% of current data	Process materials and energy: -35% of current data	impacts					
	Layer thickness (µm)	100	150		- 100 mg / 100 mg	100								
	% Avg. module efficiency Module	22	20	10	25	22	22	40	una dula officiana d					
HE	lifetime (yrs)	1.1	30	30	30	40	35	35	 module efficiency 					
REALISTIC OFTIMISTIC	Avg. system efficiency (%) Material and energy flows			90	Phanubis et al		75	Pitrenakis et al 2006.	 system efficiency 					
2E	source	Crystals	leur 2005	Duty from Industry										
-0	Estimation	Process materials and energy - 20% of current data		Process muterials and energy: -20% of current data	Process materials and energy -25% of current data	Process materials and energy1 -20% of current data	Process materials and energy: -30% of current data	Process materials and energys -35% of current data	Iifetime					
-	Layer thickness (um)	150	200	1000 (2010) - 10	and the second	150	Construction of the second		kWh produced					
10	% Avg. module efficiency Module	17	14	12	NA	18	16	35						
×		-	30	25	hiA	35	30	30						
Ĭ	scarting (her)			90			35	Pthenukis et al 2006.						
SIMISTIC	Material and energy (%)													
PLSS IMI STIC	Aug. system efficiency (%) Material and energy flows source	10000	lear 2005 decision and	Data from Industry Process materials and	NA Process materials and	Crystalclear 2005 Process materials and	Deta from Industry Process meterials and	Mohr et al. 2006 Process materials and						

duction lab ficiencies omponents	Gass Dilot	industrial cost final product
ficiencies	pilot	cost final product
		final product
mponents		
		automation & integration
atch	inline	inline
nited	central	central + dedicated
recycling	no recycling	recycling: heat, water, HF, etc

