ReCiPe overview

product ecology consultants

Mark Goedkoop goedkoop@pre.nl

Partners of ReCiPe project

- RIVM
 - modelling expertise in many types of environmental impacts
 - Jaap Struis
- CML
 - developer of midpoint-oriented method in Handbook on LCA
 - Reinout Heijungs
- PRé
 - developer of endpoint-oriented Eco-indicator 99
 - Mark Goedkoop; An de Schryver
- RUN
 - Radboud University Nijmegen
 - Mark Huibrechts, Rosalie van Zelm

Eco-indicator 99 endpoint method

PRé

Key features/weaknesses

Key features

- Focus on simplifying the weighting problem
 - Just three endpoints
 - Endpoints are relatively easy to interpret
 - Default weighting sets
- Management of subjective choices through cultural perspectives
- Key weaknesses:
 - High uncertainties in endpoint models
 - Missing links: impacts in water bodies, climate impact on ecosystem, etc.
 - Limited range of toxicity factors
 - About 10 years old

Your assessment....

Emerging consensus

(New) endpoint indicators

- Human health: DALY [yr]
- Ecosystems. Species.year [yr]
 - PDF.m².yr and PDF.m³.yr are harmonised on the basis of species density
 - Only known species
 - Only habitable terrestrial area, only top 200 meters of marine water bodies
- Resources: Increased costs [\$]
 - Characterisation model calculates surplus cost per ton
 - In theory damage is indefinite.....
 - Discount rate of 3% is used to calculate fixed amount
 - Other rates can be choosen

Example: endpoint climate change Step 1: temperature increase

- Meinshausen analysed many climate models and investigated effect of CO2 mitigation on temperature
- If 10 Giga ton carbon emission per year is avoided during 100 year, the temperature will be 2,6 degree lower after 100 year.

Meinshausen, M., 2005, Emission & Concentration Implications of long-term Climate Targets, Dissertation 15946 for the Swiss federal Institute of Technology, Zurich. WWW.lcia-recipe.net

Example: endpoint climate change Endpoint: Human health damage

• Basis: WHO study

- McMichael, A.J., Campbell-Lendrum, D.H., Corvalan, C.F., Ebi, K.L., Githeko, A., Scheraga, J.D., Woodward, A., 2003. Climate change and human health. Risk and responses. Word Health Organization, Geneva. 322p.
- Problem: Many assumptions have to be made regarding:
 - Adaptation; will people adjust to different climate?
 - Role of economy: Malnutrition can be avoided if economy is healthy
 - Manageability: will policies work?

Three senarios (Used in all impact categories)

	Time perspective	Manageability	Required level of evidence
H (Hierarchist):	Balance between short and long term	Proper policy can avoid many problems	Inclusion based on consensus
I (Individualist):	Short time	Technology can avoid many problems	Only proven effects
E (Egalitarian):	Very long term	Problems can lead to catastrophy	All possible effects

Cultural perspectives

Example: endpoint climate change Relation Human Health and temperature

www.lcia-recipe.net

PRe

Example: endpoint climate change: Loss of species due to temperature increase

 Basis: Article by Thomas et. al. in Nature 2004, that summarises several regional studies, on effect of temperature on PDF

Temp increase

Acidification; European Forests

- PDF related to Base Cation Saturation BCS $BCS = \frac{BC}{CEC} = \frac{[K] + [Ca] + [Mg] + [Na]}{[H] + [K] + [Ca] + [Mg] + [Na]} \cdot 100$
- Fate factor for European grid 50*50 km $FF_{soil,j} = \frac{dBCS_j}{dDEP}$

• Effect factor
$$EF_j = \frac{dPDF_j}{dBCS_j}$$

• Regression formula combined with Monte Carlo $\ln\left(\frac{P_{crit,s}}{1-P_{crit,s}}\right) = a_s + b_s \cdot BCS_{crit} + c_s \cdot BCS_{crit}^{2}$

Regression result

Result: Site independent effect factor

Fate aquatic eutrophication (Carmen+EUTREND)

Damage from eutrophication

Land occupation

$$ED = PDF_{reg} * A_{reg} + PDF_{i} * A_{i} + PDF_{occ.} * A_{occ.}$$

$$Eand use Reference e landuse Vive land$$

Z is not constant

Which has strange consequences

Conversion

Ecosystem	Restoration time (year)
Vegetation of arable land, pioneer vegetation	< 5
Species poor meadows and tall-herb communities, mature pioneer vegetation	5 - 25
Species poor immature hedgerows and shrubs, oligotroph vegetation of areas silting up, relatively species rich marshland with edges, meadows, dry meadows and heath land.	25 - 50
Forests quite rich in species, shrubs and hedgerows	50 - 200
Low and medium (immature) peatbogs, old dry meadows and heathland	200 - 1000
High (mature) peatbogs, old grow forests	1000 - 10000

Data for Land-use

Data found for Swiss lowlands and UK

Mineral resource depletion

- There is no such thing as copper ore, so you cannot deplete it:
 - Copper is produced from several minerals, and minerals are found in deposit
 - Deposits usually contain multiple commodities like copper, silver, Manganese and Gold etc.
 - Some metals are always small co-products

How commodities and Deposits interrelate

PRe

More resources at lower grades

- Actual mining data used to yield/grade relationship per deposit:
 - Grade in \$/kg
 - Yield in \$
- We expected log, but found linear relationship
- Relationships for all 50 deposits
- In EI99 we had such data¹ per commodity....(?)

- Lower grades means higher efforts:
 - In EI99 expressed as surplus energy
 - In ReCiPe expressed as costs
- Rough estimate:
 - 13 \$ per ton processed deposit
 - Grade determines how much must be processed, and thus what the cost are
- Left out in midpoints...

From cost increase per deposit to commodity

- Market value allocation:
 - Cost increase per extracted \$ value
 - Cost increase per extracted mass
- Main weaknesses:
 - Grade yield data in mining, not representative for geological reality?
 - Market prices have important influence, and they are not stable.....
- Improvement over EI99:
 - Real data used, and not just expert judgements
 - Co production taken into account

Is the result better?

- Comparison, taking iron equivalent as basis:
 - Recipe (Black)
 - EI99 (striped)
 - CML (white)

Fossil resources

- Grade has no meaning in fossil resources
- In stead we have to gradually move to secondary resources like tarsands, this increases the "effort"
- The problem with resource statisitcs

Source: BP Statistical Review of World Energy, 1997.

Conventional oil

Based on USGS data and IEA analysis

Available Oil Resources as a Function of Economic Price

Source: Resources to Reserves - Oil and Gas Technologies for the Energy Markets of the Future, IEA, 2005

Depletion fossil fuels (oil)

Source: IEA.

- Fossil depletion only refers to liquids
- Gas and coal could not be modelled, and are assumed as being as scarce as oil.....
- Very rough model based on IEA statistics:
 - Oil data is inherently unreliable:
 - based on an in-crowd "peakoilists" who have no data
 - OPEC, whose members have no interests in real data
 - Oil companies that underreport

Last step: discounting

- So far the Marginal Cost Increase (MCI) per kg, due to the extraction of a kilo has been determined
 - If the price of steel changes 1 kg, this has a much higher societal cost that if the price of bismuth increases a cent
 - MCI has little societal meaning
- In ReCiPe MCI is multiplied with annual production to get societal cost per year.
- But why not 100 year or indefinite?
- In stead a discounting rate is used (3%)

Your Assessment

ReCiPe Features, weaknesses

- Features:
 - Mid and endpoint models
 - Advanced models, state of the art, many are published in reviewed articles
 - Will get good recognition in the EU
 - Much wider range of toxic substances, but rough model
 - Also impacts in water bodies
 - Much better models for climate, ozone, resources and land use
- Remaining weaknesses
 - Weighting problem
 - Sometimes very high uncertainties

- ReCiPe website will get all the models, we want to create an open source LCIA community
- FP7 project call open now, builds on EULCIA project:
 - Focus on remaining problems
 - New impact categories for non OECD