

E - S e r v i c e s fair consulting in sustainability	K and		
	F	uel	
Gasoline or Diesel	_		
 average supply sit 	uation in Sv	vitzerland	
 electricity 	CH Mix	certified Mix	
- coal/oil:	0%	0%	
- natural gas:	1%	0%	
- nuclear:	27%	0%	
- hydro:	31%	97 %	
- new renewabls:	0%	3%	
- imports:	39 %		
Scenarios: different	electricity	sources	
Page 5			www.esu-services.ch

Fair consulting in sustainability

characteristics of cars analysed

- "lower compact" class ("Golf" class)
- best available technology
- Lifetime performance car: 150'000 km
- lifetime performance battery: 75'000 km
 2 batteries per car life (on average)
- average occupation: 1.6 Persons per car

www.esu-services.ch

E S e r v i c e s

Further characteristics

property	Unit	Electric car	Hybrid car	Diesel car	City car electro	City car Diesel
Weight of car	kg	1320	1320	1320	550	550
Weight of battery	kg	312	38	-	100	-
Power	kW	60	73/60	77	40	20
Weight of electro motor	kg	104	104	-	70	-
Energy density bat cells	Wh/kg	130	100	-	150	-
Cruising range	km	133	-	-	143	-
electricity / 100 km	kWh	20	-	-	7	-
fuel / 100 km	Litre	-	4.3	3.8	-	2.0

-services

fair consulting in sustainability/

Environmental impacts of car driving

Environmental impacts (eco-points 2006)

-services fair consulting in sustainability How to cover additional electricity demand? 1'000'000 cars (25% of Swiss car fleet): 2.4 TWh/a 100% 90% 80% 70% 60% 50% remaining 40% electric cars 30% 20% 10% 0% Potential new 1 new NPP 1 new gas GCC renewables 1600 MWe 400 MWe SFOE Scenario III E Page 15 ices.ch

E S E F V I C E S

battery manufacture

- information based on environmental report of Maxell Corp. Japan
- energy demand calculated by allocation of total demand via share of sales and unit price of battery
- electricity demand (CN, JP): 10.2 kWh/kg
- heat demand (oil, natural gas): 1 Litre oil-eq/kg
- lithium content in battery: 11 g/kg battery

Page 17

www.esu-services.ch

services

fair consulting in sustainability

1 kg battery: impact indicator results

	Unit	Primary energy	climate change	environmen- tal impact	high level rad waste
ecoinvent data v2.2	kg	109	5.8	15.6	17800
ESU-services	kg	265	17.1	23.3	17500
Input-Output	kg	267	17.8	0	32300
Zackrisson et al. 2010	kg	n.a.	15.5-25	n.a.	n.a.
Ishihara et al. 2002	kg	200	10	n.a.	n.a.
Page 18				www.e	su-services.

E S E F V I C E S

Synthesis (cont.)

- Environmental impacts comparable
- Environmental impacts electric car: from tailpipe to power plant (and battery manufacture)
- Depending on electricity mix, impacts may be higher (high radioactive waste)
- Light weight cars with significantly lower impacts compared to current best in class cars

```
Page 21
```

www.esu-services.ch

Services Services Conclusions Electric cars are no silver bullets for the challenges of individual mobility More important than propulsion technology is: Reduction of the fleet consumption Reduction of the fleet consumption Reduction of the fleet consumption Reduction of the fleet consumption

www.esu-services.ch