

OVERVIEW

2

Environmental Impacts of Swiss Consumption and Production:

A combination of input-output analysis with life cycle assessment

A project for the Swiss Federal Office of the environment (FOEN)

Project team:

ESU-services Ltd.

Rütter+Partner

- 2. Environmentally extended IOA
- 3. Extensions
- 4. The Swiss IO tables and NAMEA used in EE-IOA

3

Economic input-output analysis

- Input-output tables (IOT) show the supply and use of goods and services in the economy
- Three kinds of tables:
 - Supply table: shows the supply of goods by industries, i.e. domestic production and imports
 - Use table: shows the use of goods by industries and final demand
 - Symmetric IOT: similar to Use table; homogeneous branches instead of industries
- Supply and use of goods are recorded in monetary units
- Number of industries usually equal to number of goods
- Various options to record the use of imported goods

Scheme of a SUPPLY table: supply of goods by industries

Scheme of a **USE table**: use of goods by industries and final demand

HH: Consumption of private Households expenditures

Inv.: Investment Exp: Export

Gov.: Consumption by government

- Scheme of a symmetric input-output table (SIOT): use of goods by homogeneous branches and final demand
- Homogeneous branch: More homogeneous than an industry; aggregation of similar activities

- Example: Input output model based on a SIOT
- Question: How much production is induced in all industries of an economy by an increase in final demand, if you completely consider the supply chains of production
- Calculation steps
 - Given: Final demand Y
 - Calculation of input coefficient matrix A from IOT
 - Calculation of Leontief inverse L = (I A)⁻¹
 - Total output $X = (I A)^{-1} Y$

Environmentally extended input-output analysis (EE-IOA)

11

- Equivalent with NAMEA (National accounting matrix including environmental accounts)
- For each industry the emissions and resource uses related to its activity are recorded; for households the direct emissions and resource uses are recorded seperately

GHG EMISSIONS OF HOUSEHOLDS AND INDUSTRIES IN SWITZERLAND

0 5 10 15 25 20 Households direct Other services Waste management **Transport services** Industry branches Consumption goods Investment goods Other basic materials Chemicals, plastic Refinery products Electricity, gas, water Primary sector CO2 fossil ■N2O CH4 HFCs PFCs SF6

Mt CO2-eq

 Question: How much emissions and resource use are induced in all industries of an economy by (an increase in) final demand, if you completely consider the supply chains of production

Calculation steps

- Given: Final demand y and emission coefficient matrix F (= emissions per unit of economic output)
- Calculation of input coefficient matrix A from IOT
- Calculation of Leontief inverse L = (I A)⁻¹
- Total output $x = (I A)^{-1} y$
- Total emissions $e = F x = F (I A)^{-1} y$

ALLOCATION OF GHG EMISSIONS TO HOUSEHOLD CONSUMPTION

Mt CO2-eq 0 10 15 20 5 Housing and energy Residential construction Furnishing/ househ. equipment Nutrition Clothing Health Mobility Education, communication Leisure and culture Hotels and restaurants Other goods

Direct household emissions

Emissions from domestic production

rütter+partner

Final demand of households

Compatible with national accounts (system boundaries, definitions, etc.)

Residence principle

- Resident economic units are companies and households resident in a country
- Compatibility of economic activities by resident units and the related emissions / resource use
- Deviations from territorial emissions (e.g.):
 - Energy use / emissions by domestic tourists, transport companies or airlines in foreign countries are considered domestic
- Waste management is recorded as a service delivered to industries or households.
- Strengths:
 - Comprehensive coverage of all transactions within the economy
 - Calculations require rather low resources

Limitations

High aggregation level causes aggregation errors

Extensions

- Multiregional EE-IOA
- Structural decomposition analysis
- > (Use in hybrid LCA)

Database

- IO tables of several countries
- Linked by bilateral trade flow tables
- Extended with emission and resource use data (currently largely restricted to energy use and greenhouse gas emissions)

Policy / research questions

- What are the total environmental impacts induced by one country's final demand in other countries (consumption perspective)
- Modelling in principal similar to single country modelling
- Large data requirements / internationally harmonised data
- Existing EE-IOT databases
 - OECD database (IOT extended with GHG data)
 - GTAP database (IOT extended with GHG data)
 - EXIOPOL (in development)

- Aim: to explain the causes for change of emissions during a time period
- Change of total emissions can be explained by the following components:
 - Change in the level of final demand
 - Change in the structure of final demand
 - Structural change in industries
 - Change in the environmental intensity of household consumption
 - Change in the environmental intensities of industries
- The more components are distinguished, the larger is the relevance of joint effects

The Swiss IOT and NAMEA used in EE-IOA

Swiss IOT:

- Different from other European countries, the Swiss IOT is currently not published by the Swiss statistical office, but estimated by research groups
- Quality of Swiss IOT is lower compared to other OECD countries, since important basic statistics are missing (e.g. commodity statistics, cost structure statistics); intermediate inputs are estimated from foreign IOT => Best you can do!
- 42 industries (according to NACE rev 1.1), 12 household consumption categories (according to COICOP classification)
- The use of domestic and of imported commodities is not distinguished

NAMEA:

- **NAMEA Energy**: Use of 16 energy carriers by industries and households
- NAMEA air: Emission of 6 greenhouse gases by industries and households

In the project presented in the following we made the following adjustments to the Swiss IOT:

- SIOT for base year 2005
- 43 industries: separation of refineries from chemical industry
- Separation of domestic and imported goods
- Final consumption of non profit institutions and of government is partly allocated to consumption categories of private households (e.g. health, education, culture)
- Residual public final demand includes expenditure for the benefit of the whole society, e.g. expenditure for the security system or the judiciary system
- Capital investment expenditure is reallocated
 - Investment in residential buildings is allocated to housing
 - Investment by industries is allocated to the investing industries (large uncertainty)
 - Government investment expenditure that serves a general purpose (e.g. investments in roads) remains with residual public final demand

Separation of domestic and imported goods

Assumption: same use patterns for domestic and imported goods

Before adjustments:

- Household consumption
 - Food and beverages, tobacco
 - Textiles and clothing
 - Housing and energy
 - Household goods and furniture
 - Health
 - Mobility
 - Communication
 - Leisure and culture
 - Education
 - Restaurants and hotels
 - Other goods
- Government consumption
- Investment expenditures
- Exports

rütter+partner

After adjustments:

- Household consumption
 - Food and beverages, tobacco
 - Textiles and clothing
 - Housing and energy
 - Household goods and furniture
 - Health
 - Mobility
 - Communication
 - Leisure and culture
 - Education
 - Restaurants and hotels
 - Other goods
 - Residual public final demand
 - Investment in residential buildings
- Exports
- Allocation to industries

Swiss IOT:

"Official" IOT: 42 industries available for 2001, 2005, 2008

- IOT disaggregated in the energy and transport sector: 66 industries
 - currently available for 2005,
 - 2001 available during fall 2011
 - 2008 available in 2012

NAMEA energy and air:

- Currently available for 42 and 66 industries: for 2001 and 2005
- 2008 probably available in 2012