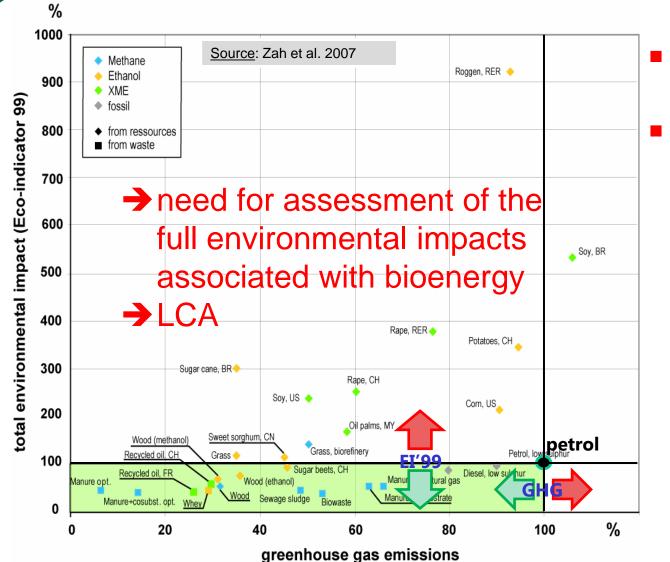


What are the environmentally optimal uses of different biomass feedstocks - heating, electricity generation or transportation?

LCA DF 47

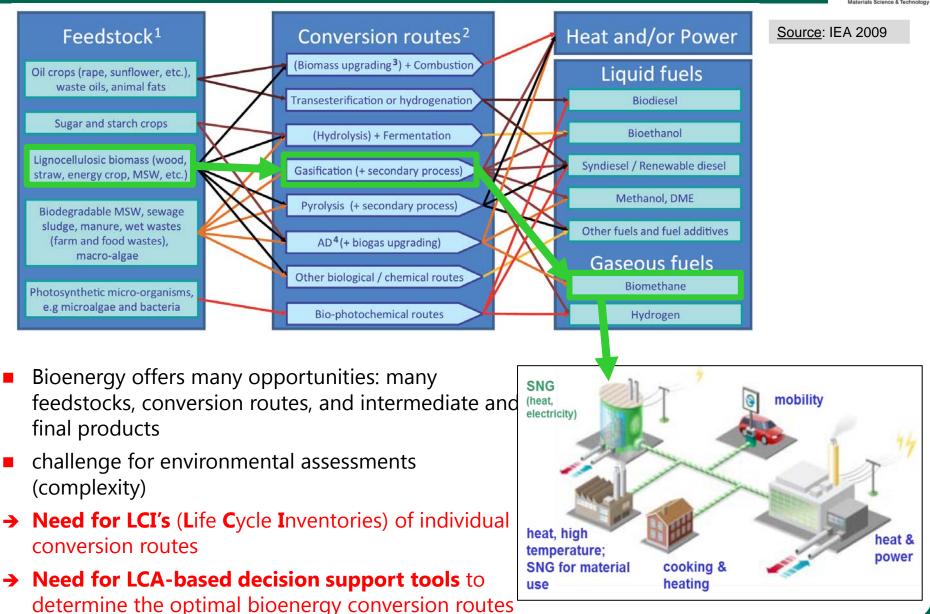
Bernhard Steubing

April 23rd, 2012 Berne - Ittingen



Materials Science & Technology

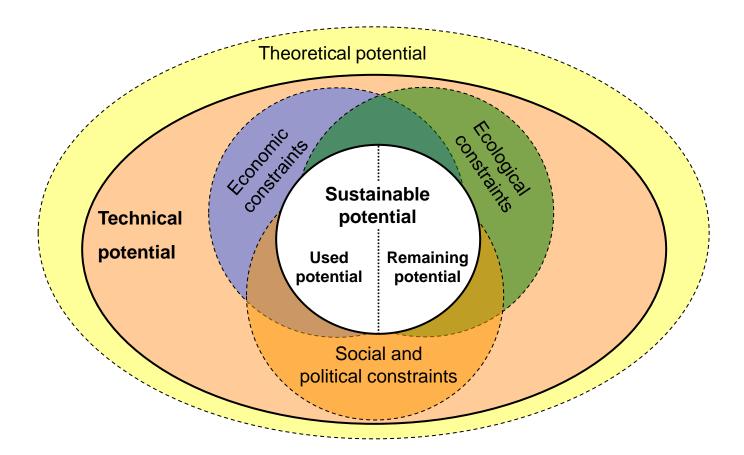
Bioenergy and the environment



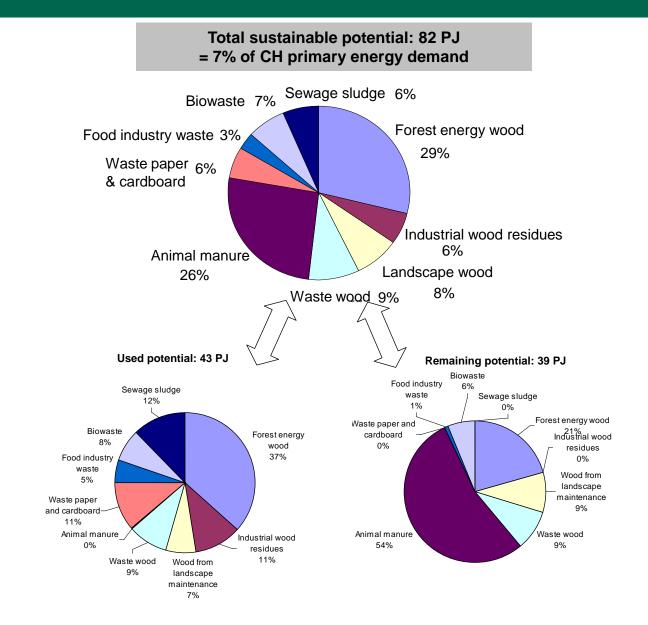
- Most biofuels show GHG benefits
 - many show higher environmental impacts in other categories

Bioenergy conversion routes

- What is the **availability of biomass** for energetic uses?
 - \rightarrow study for CH case
- What is the **environmental optimal use** of this biomass?
 - \rightarrow methodological approach
 - \rightarrow analyses for CH and EU-27


Conclusions and recommendations

Biomass availability in Switzerland



Application of a sustainability constraints approach to quantify the sustainable biomass potential

Sustainable, used and remaining potentials

Optimal use of biomass for bioenergy production

Methodological approach

What kind of an assessment do we need to conduct to provide answers to the environmentally optimal use of bioenergy?

Optimization criteria ?

- Different environmental indicators:
 - ▶ GWP IPCC 100a
 - Ozone depletion
 - Human toxicity
 - > Photochemical oxidant formation
 - Particulate matter formation
 - Terrestrial acidification
 - > Freshwater eutrophication
 - Terrestrial ecotoxicity
 - Recipe single score
 - CED, non-renewable, fossil

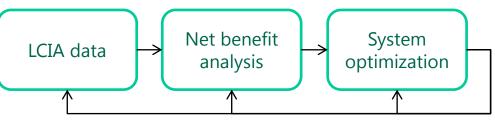
Functional unit ? \rightarrow resource-based

Biomass input

System boundaries ? \rightarrow systemic perspective

- All relevant biomass feedstocks, conversion routes, and uses (sectors)
- > All relevant fossil energy substitutions

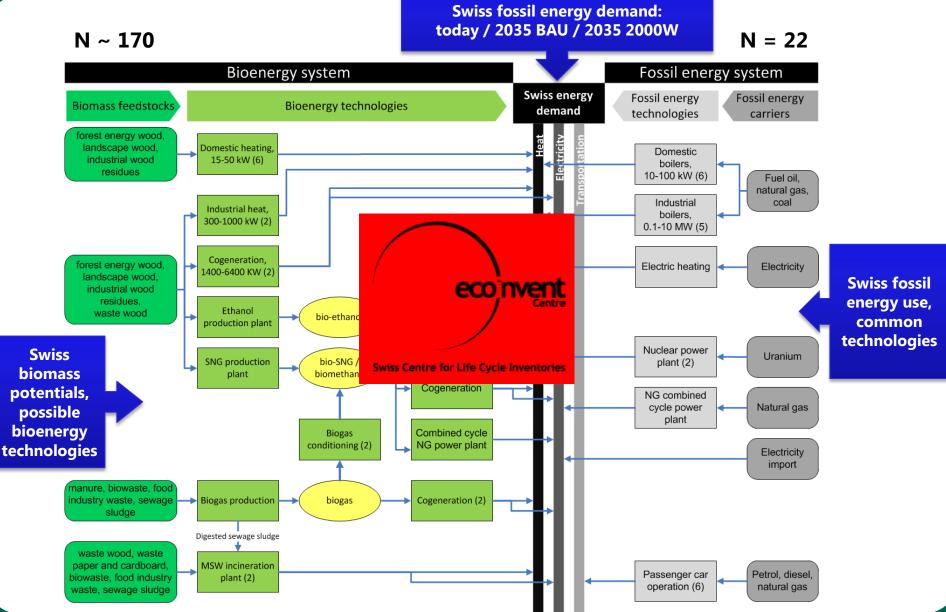
Constraints ?


- Biomass availability
- Use of fossil energy technologies

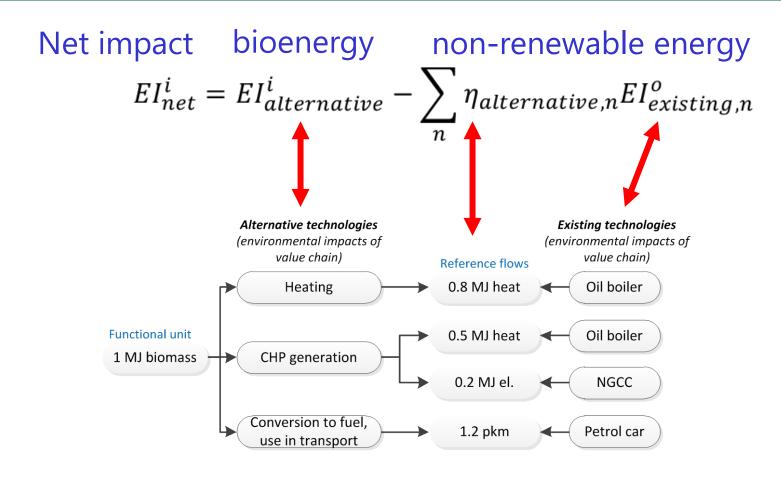
Spatial and temporal dimension ?

> CH / today and future (static)

Uncertainties ? e.g. LCI / LCIA / constraints

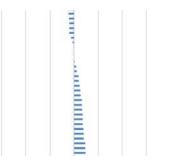

 Monte Carlo simulation for assumed uncertainties

Sensitivity, scenario and uncertainty analyses


Bioenergy and fossil energy technologies (CH)

Net environmental benefit calculation

Net benefit analysis results (CH)

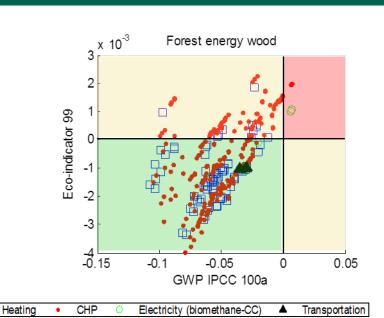

Agric. resid., BiogasSNG, SNG CC'S: [] 'Electricity, oil, at power plant/UCTE U' [] AS, CoGen, Ignition, Strom & Wärme'S: 'REF_2005_ AS, CoGen, Ignition, Strom & Warme' 5: 'WEF 2035 ING. BCM. SNG CC' 5: [] 'Electricity, o anol, Transport, EURO 5' S: [] [] 'REF sanol, Transport, EURO 5' S: [] [] 'REF 5. CoGen. Ignition. Strom & Wan otor, Strom & Wärme' 1 Gen. lanition, Strom & Willime' St.1 otor, Strom & Wärme' 5: 'REF, 2035 Transport, EURO 5" St.[] [] 'REF_1 AS, CoGen, Ignition, Strom & Wärme' S 'REF_208 NotessSNG, Wärme' 5: 'REF 2035 Heat, and GAS, CoGen, Gasmotor, Strom & Wärme' 5: 'RE inSNG, Wärme, Industry' 5: 'REF 2035 Heat, at h CoGen, Gasnotor, Strom & Warme' S: 'REF_2035 IAS, Collien, Ignition, Strom & Warme' S: 'REF_2003 CoGen, Ignition, Strom & Wileme' S: 'REF_2035_Hi AS, CoGen, Gasmotor, Strom & Wileme' S: 'REF_2035 dSNG, Collern, Strom & Wärme' S: 'REF 2025, Heat, a BIDGAS, CoGen, Gasmotor, Strom & Wärme' 5: 'RE SAS, ColGen, Ignition, Strom & Warme' S: REF _2035_He en, Ignition, Strom & Wärme' 5: REF_203 d., BIOGAS, CoGen, Gasmutor, Strom & Willime' S: 'REF AS, Collen, Garnotor, Strom & Wärme' 5: 'REF 2035 ogadSNG, BCM, Wärme' 5: 'REF_2035_Heat, anthracite NG, BCM, Wärme, Industry' S: REF_2035_Heat, at GAS, CoGen, Ignition, Stram & Wärme' S: REF_200 otor, Strom & Wärme' 5: 'REF 203 GAS Collen Ga BiogadSNG, Coller, Strom & Wärme¹ 5: 'REF 2015 H is, CoGen, Ignition, Strom & Wilrme' S: REF_2035. 4G, SNO CC'S: [] 'REF_2035_Electricity, natural gas, BIDGAS, CoGen, Gasmotor, Strom & Wikime'S nSNG, Collien, Strom & Wileme' S: 7817 2025 Heat, at logas5NG, Wärme, Industry' 5: '8EF, 2035, Heat, light 45, Collen, Gaunator, Strom & Wärme' 5: 'REF 2019 KGAS, CoGen, Ignition, Strom & Wärme' S: 'REF_2005 BiogasSNO, Collien, Stram & Warmer' S: 'REF_2023_14 NS CoGen, Gasmotor, Strom & Warme' 5: 'REF 2035 Heat, at BiogadSNG, Transport, EURO 5' 5: [] [] YEF_2035_Transport, passenger car, petrol, logadSNG, BCM, 5NG CC' 5: [] YEF_2035_Electricity, natural gas, at combined cycle. SNG, Wärme' 5: 'REF_2035_Heat, light fuel oil, at boiler 100kW condensing, non GAS, CoGen, Ignition, Strom & Wärmer'S: 'REF, 2035, Heat, at hard coal BioeasSNG, Transport, EURO 5' 5: El (1 YEF 2015 Transport, passenaer car, dese SNG, BCNJ, CoGen, Strom & Wärme' S: 'REF_2035, Heat, anthracite, at stove 5 gasSNO, BCM, CoGen, Strom & Wärme' 5: 'REF_2035_Heat, at hard coal industria ING, Transport, EURO 5' 5: [] [] 'REF_2005_Transport, passinger ca ogasSNG, CoGen, Strom & Wärme' 5: 'REF_2035_Heat, light SNG, Wärme' 5: 'REF 2025 Heat, natural gas, at b NO. BCM, Warme, Industry' 5: 'REF, 2035, Heat, light fuel oil, at industrial fi logaidNG, Wärme, Industry' 5: '867_2025_Heat, natural gas, at industrial h NG, BCM, Transport, EURO 5' 5: [] [] 'REF_2035_Transport, passenger car, pr NG, BCM, Wärme' S: 'REF_2005_Heat, light fuel oil, at boiler 100k5 f., BiostasSNG, CoGen, Strum & Wärme'S: 'REF, 2035. Heat, natural gas, at indus SNG, BCM, Transport, EURO 5' 5: {] [] 'BEF_2035_Transport, passenger car, d L. BIOGAS, Collien, Gaumattor, Strom & Wärme' S. 'BEF 2035, Heat, light fuel oil, at SAS, CoGen, Gaumotor, Strom & Wärme' 5: '8EF_2035 [Heat, light fuel oil, at bo gasSNG, BCM, Cotliers, Strom & Wärme'S, 'REF, 2015, Heat, light fuel oil, at indu-AS, CoGen. Ignition. Strom & Willime' St REF. 2085. Heat, light fuel oil, at ind BiogasSNG, BCM, CoGen, Strom & Wärme' S: 'REF, 2035. Heat, anthracite, at stove 5 , BiogatSNG, BCM, Transport, EURO 5' 5: [] [] 'REF_2085, Transport, paisenger car logatSNG, BCM, Collen, Strom & Wärme '5: 'REF_2035, Heat, light fuel oil, at bole SNS, 6CM, Wänne' S. 18EF, 2035. Heat, natural gas, at boller atmo AS, Collen, Ignition, Strom & Wärme' S. 18EF, 2035. Heat, light lue dSNG, BCM, CoGen, Strom & Wärme' S: 'REF, 2035. Heat, at hard-coal indi NG, BCM, Wärme, Industry' 5: 'REF 2035. Heat, natural gas, at industrial fu gasSNG, BCM, CoGen, Strom & Wärme' S: 'REF_2035_Heat, natural gas, at bole AS, CoGen, Gasmotor, Strom & Wärme' S: 'REF_2035_Heat, natural gas, at bole

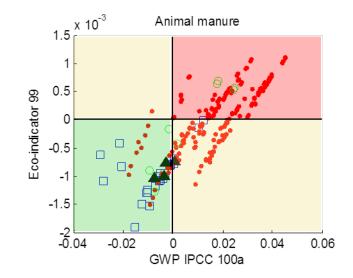
resid., BiogasSNG, SNG CC'S: [] 'Electricity, hard coal, at power plant/UCTE U' [, BiogadSNG, BCM, SNG CC'S: [] 'Electricity, hard coal, at power plant/UCTE U' [

COAA, Coleen, Isaantolin, Shrain & Wairme' S. Yah., 2005, H and BookaS, Colern, Storm & Wairme' S. Yahi, 2005, H and BOOAS, Colern, Iganiton, Strom & Wairme' S. Yahi, 2003 SidaS, Caden, Iganiton, Strom & Wairme' S. Waf, 2003 SidaS, Caden, Iganitan, Strom & Wairme' S. REF, 2003, J MadaS, Conden, Iganitan, Strom & Wairme' S. REF, 2003, J MadaS, Conden, Gannator, Strom & Wairme' S. REF, 2015, JH MadaS, Conden, Gannator, Strom & Wairme' S. REF, 2015, JH MadaS, Conden, Caenator, Strom & Wairme' S. REF, 2015, JH MadaS, Conden, Gannator, Strom & Wairme' S. REF, 2015, JH MadaS, Conden, Caenator, Strom & Wairme' S. REF, 2015, JH MadaS, Conden, Caenator, Strom & Wairme' S. REF, 2015, JH MadaS, Conden, Caenator, Strom & Wairme' S. REF, 2015, JH BIDGAS, CoGen, Ignition, Strom & Wärme' 5: 'REF 2005 HSNG, BCM, Co Gen, Strom & Wärme' S: 'REF_2035 1 ISNG, Collers, Strom & Wärme' S: '837_2035_Heat, ISNG, BCM, Collen. Strom & Wilme' 5: 'HEF_203 ., BIDGAS, CoGen, Ignition, Strom & Wärme' S. 'REF_2005 d., BiogasSNG, BCM, CoGen, Strom & Wärme' S. 'REF_2003 adiNG, BCM, Collen, Strom & Warme' S: 'REF_2015_H Agric. resid., BiogasSNG, SNG CC'S: [] 'Electricity, nuclea E. BiogaiSNG, BCM, SNG CC'S: [] 'Electricity, mucle SAS, CoGen, Gasmotor, Strom & Wilrme' S. 'BE easSNG, CoGen, Strom & Wärme' S. 'REF 2035 14 Gen, Gasmotor, Strom & Wärme' 5: '8EF_203 LoGen, Ignition, Strom & Wikime' 5: 7817_2035_Ne NG, BCM, CoGen, Strom & Wärme' S-5 Collen, Gaimotor, Strom & Wärme' 5: 'REF 2035 logasSNG, CoGen, Strom & Warmer'S: 'REF_2035, H dN0, 8CM, Collen, Strom & Warme'S: '8EF_2035 AS, Collen, Ignition, Strom & Warme'S: '8EF_2005 id., BIOGAS, CoGen, Gasmotor, Strom & Wärme' 5: 1823 BIOGAS, CoGen, Ignition, Strom & Wärme' 5: 1827_2005 AS, Collien, Ianition, Strom & Warmer' 5: 'REF. 2035. H NG, BCM, CoGen, Strom & Wärme' S: 'REF_2005_He ISNG, BCM, Cotlen, Stram & Wärme' S: 'REF_203 NG, CoGen, Strom & Wileme' S: 'NEF_2035_Hea asSNG, BCM, Collern, Strom & Wärmer'S: 'BEF 200 K. BCM, CoSen, Strom & Wärme' 5: 'HEF_2025. He BiogasSNG, CoGen, Strom & Wärme' S: 'REF_2035 liogasSNG, CoGen, Strom & Wilrme' 5: 'REF_2035 asSNG, CoGen, Strom & Wärme' NG RCM, CoGen, Statum & Wilerme" 5 CoGen, Strom & Wärme' S: 'REF' 2035 Heat, Ital m & Wärme' S: 'REF_2035_Heat, light fuel oil, at boller 100kW. Gen, Strom & Wärme' S: 'REF 2035 Heat, Tight fuel oil, at boller 100kW 4G. Collen, Strom & Wärme' 5: 'REF. 2035. Heat, natural gas, at bolls ISNE BCM. Coden. Strom & Wärme' 5: 'BEF 2035. Heat, light fuel oil, at WG, BCM, Collen, Strom & Wärme' 5: 'REF 2025 Heat, BCM, CoGen, Strom & Warmer'S: 'REF, 2035. Heat, natural ga

Woody biomassBest for heating and CHP

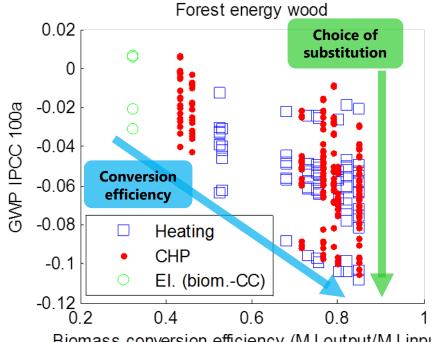
Less beneficial for transportation and biomethane-CC


Non-woody biomass

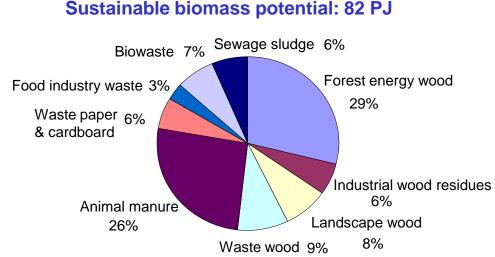

Best for heating (?)

But difference between uses is less pronounced

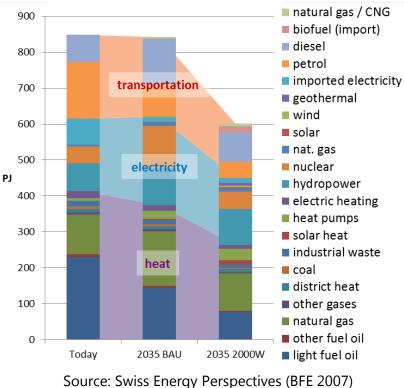
All uses seem acceptable


_			
-		-	
		-	
		_	
		_	
_			- 1
-	_		-
-			

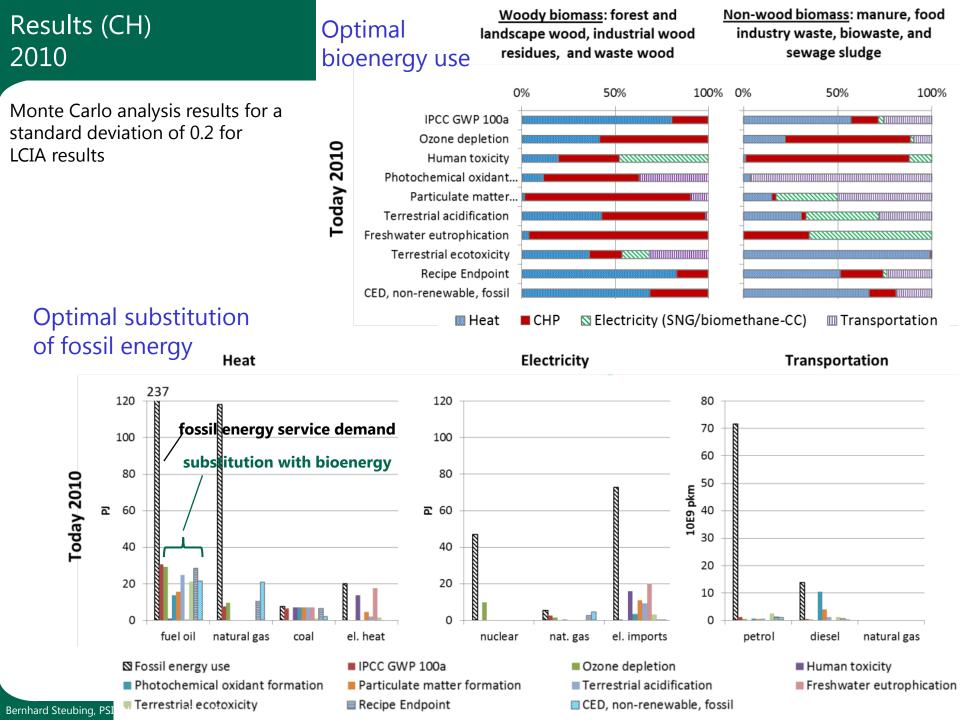
Correlation between GWP and efficiency


Biomass conversion efficiency (MJ output/MJ input)

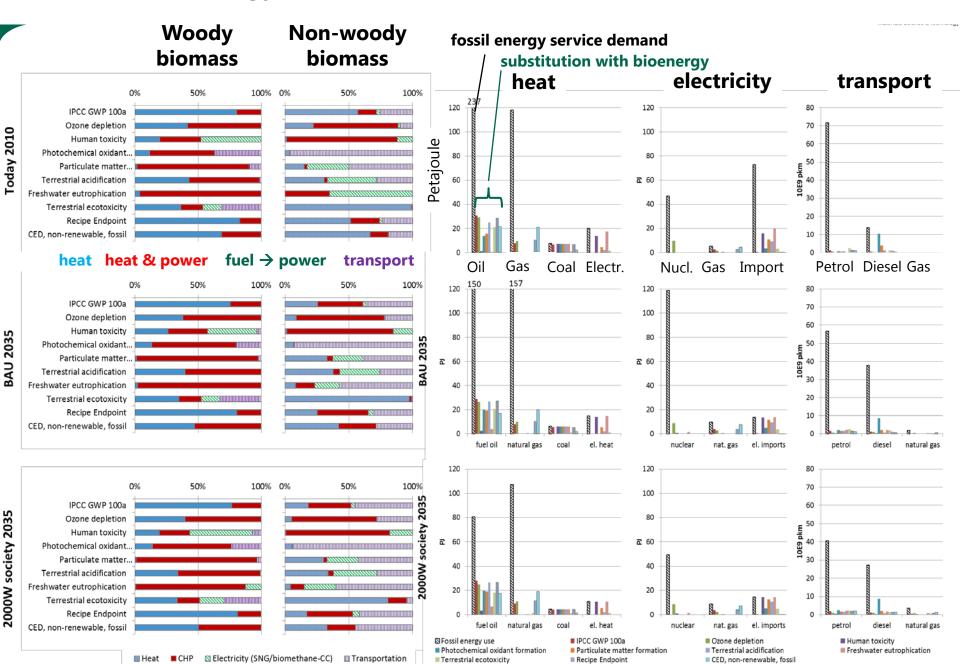
Key factors for environmental benefits:

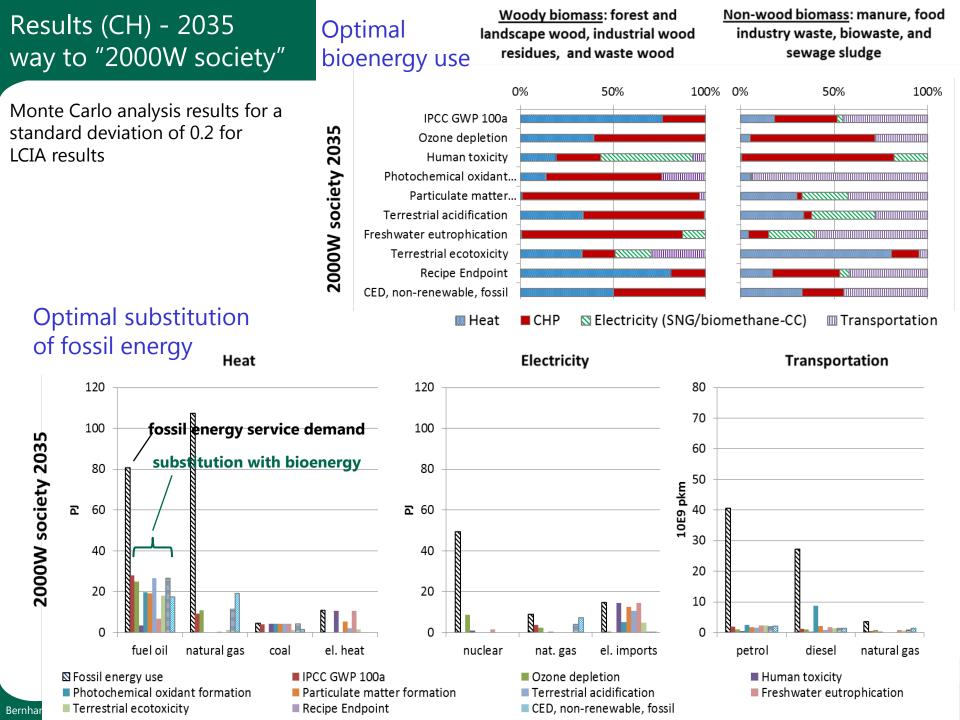

- Biomass conversion efficiency
- Substitution choice

System optimization

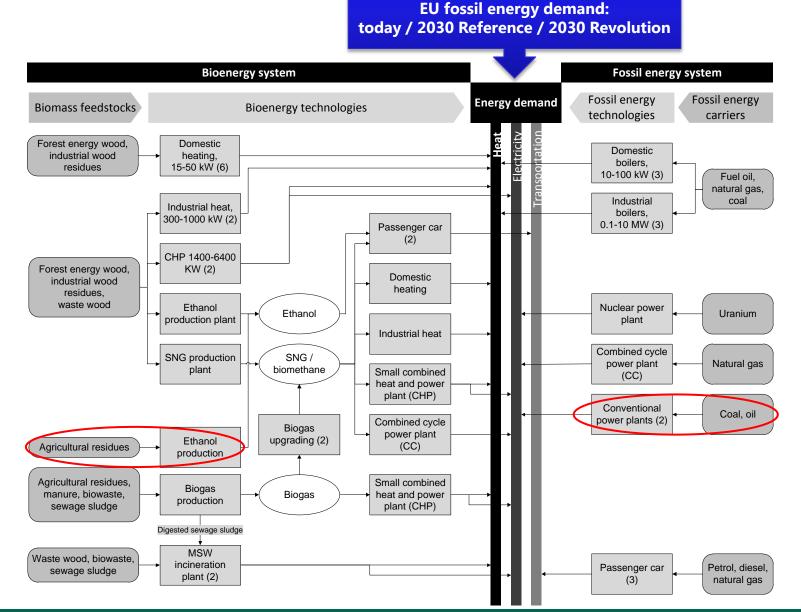


Final energy use (including other renewables)


Optimization strategy:

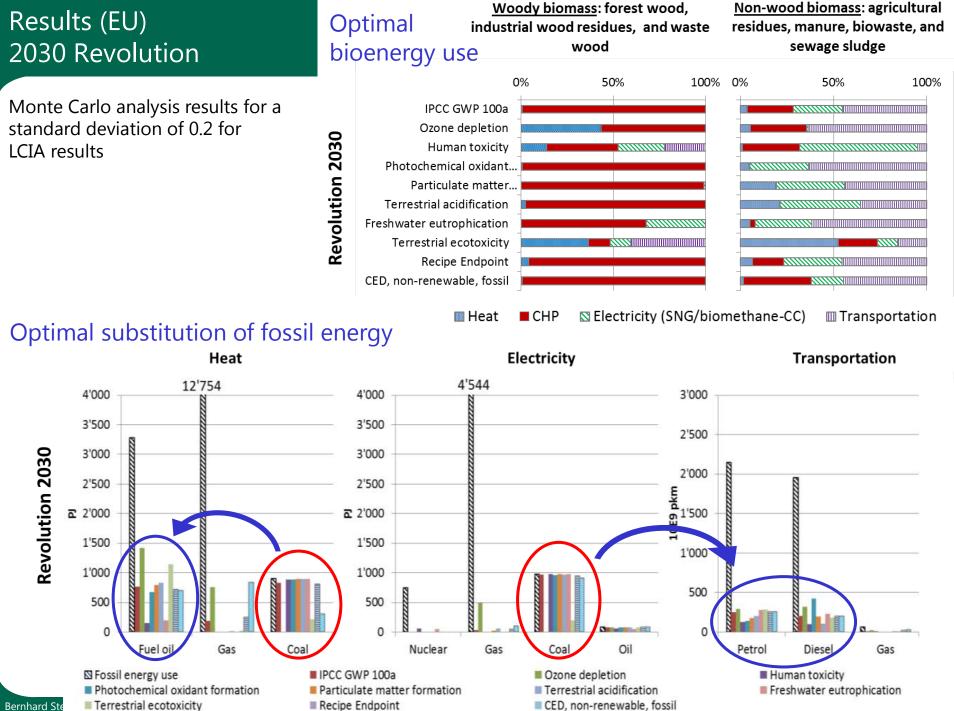

- Calculate the net benefit for all possible combinations of bioenergy and nonrenewable energy technologies
- Rank the combinations according to their net benefits for each optimization criterion
- Choose the best combinations until *either* no more biomass feedstock is available *or* no more of the fossil reference can be substituted

Bioenergy

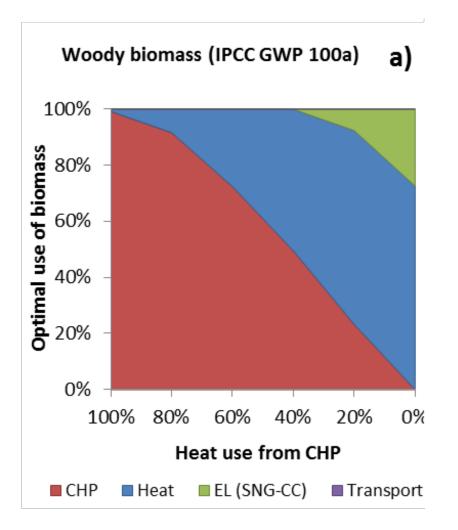

Substitution



Bioenergy and fossil energy technologies (EU)


Bernhard Steubing, PSI ENE-Seminar, 23.3.2012

Results (EU)



Heat use from CHP (EU)

- Heat use from CHP is important to insure high efficiency
- If heat cannot be used, other biomass uses are preferable

Results comparison CH and EU (BAU 2035 / Reference 2030 scenarios)

Switzerland:

- CO₂ mitigation potential
 - 5 Mt ≈ 13% of CH's total emissions
- Fossil energy substitution potential (CO₂ optimization)
 - 13% of heat
 - 3% of electricity
 - 2% of transportation

EU:

- CO₂ mitigation potential
 - 600 Mt ≈ 15% of EU's total emissions
- Fossil energy substitution potential (CO₂ optimization)
 - 9% of heat
 - 13% of electricity
 - 1% of transportation

Conclusions – Recommendations – Outlook

Conclusions

Sustainable energetic biomass potential in Switzerland?

≈ 82 PJ or 7% of CH's primary energy demand, mainly from wood, manure, and waste biomass → better assessments for specific feedstocks are needed!

How can the environmentally optimal use of bioenergy be determined?

- by adopting a *systemic perspective*, which is (amongst others) characterized by:
 - resource-based functional unit
 - simultaneous / integrated assessments of existing and alternative technologies
 - system boundaries that encompass all relevant sectors

What is the optimal use of bioenergy? CH-EU results (according to most indicators):

- woody biomass: direct heating and CHP
- non-woody biomass: all uses seem acceptable; EU: bioelectricity, and biofuels in the future
- under the conditions of (key factors for high environmental benefits):
 - high biomass conversion efficiencies
 - substitution of fossil energy from coal, fuel oil, and other high impact energy carriers
- These recommendations may change in the future due to new technologies, changed supply and demand of energy services, etc.

Policy recommendations

- (Bio)energy policies should provide integrated/simultaneous incentives to
 - make efficient resource use (high biomass conversion efficiencies)
 - replace the environmentally most critical technologies (e.g. coal and oil-based heat and power generation)
- Does it make sense to produce advanced biofuels from lignocellulosic biomass (e.g. wood)?
 - Currently environmentally sub-optimal (for most indicators)
 - In the future this may change however, due to technology improvements and a different demand of heat, electricity, and transportation from non-renewable sources
 - Therefore, research and development of these technologies should be encouraged

Data:

- Need for additional / updated life cycle inventories
- Modeling:
 - *Temporal resolution:* e.g. seasonal and intra-day differences
 - Spatial resolution: regionalization, e.g. ranging from national level reassessments to site-specific analyses
 - System boundaries: e.g. extension to the material uses of biomass
 - Impact assessment methodologies: should be improved (e.g. biodiversity, toxicity effects)
- ETH-IfU-ESD new project in the NRP66 «wood resources»:

→ Goal: identify environmental strategies for a sustainable management of wood

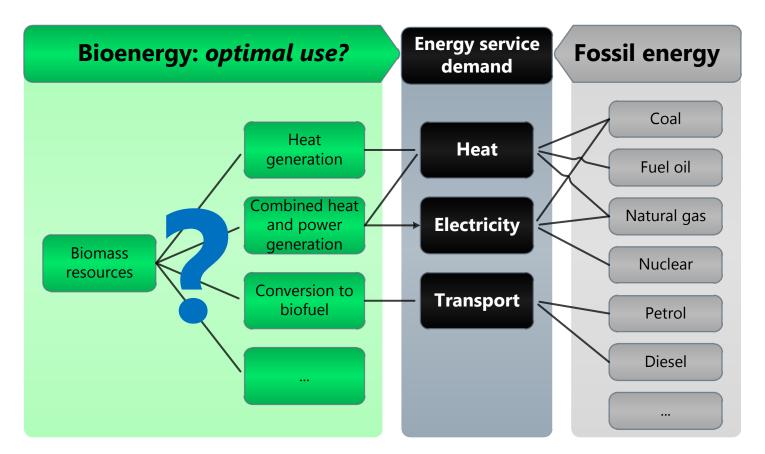
- assess current and future wood use scenarios for material, chemical, and energetic applications including cascade use and substitution
- establish life cycle inventories of new technologies
- improve wood use related life cycle impact assessment (LCIA) methods

Thank you for your attention!

- Thanks to
 - Ph.D. thesis supervisors (Prof. Christian Ludwig, Dr. Patrick Wäger, Dr. Rainer Zah)
 - Funding: CCEM

Related publications:

- B. Steubing, R. Zah, C. Ludwig, *Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective*, Environ. Sci. Technol., 46 (2012) 164-171.
- B. Steubing, R. Zah, P. Waeger, C. Ludwig, *Bioenergy in Switzerland: Assessing the domestic sustainable biomass* potential, Renewable and Sustainable Energy Reviews, 14 (2010) 2256–2265.
- B. Steubing, R. Zah, C. Ludwig, *Life cycle assessment of SNG from wood for heating, electricity, and transportation*, Biomass Bioenergy, 35 (2011) 2950-2960.
- B. Steubing, I. Ballmer, M. Gassner, L. Gerber, L. Pampuri, S. Bischof, O. Thees, R. Zah, *Identifying environmentally and* economically optimal bioenergy plant sizes and locations: a spatial model of wood-based SNG value chains, submitted.



Reserve Slides

Outline

- 1. How much biomass is available for energetic utilization?
- 2. How can we make the environmentally optimal use of this biomass?

LCA-SO framework

Optimization criteria ?

Different environmental indicators

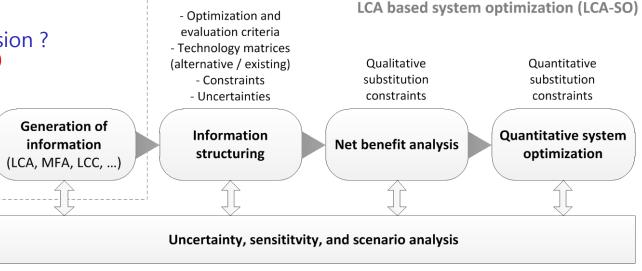
Functional unit ? \rightarrow resource-based

Biomass input

System boundaries ? \rightarrow systemic perspective

- All relevant biomass feedstocks, conversion routes, and uses (sectors)
- All relevant fossil energy substitutions

Constraints ?

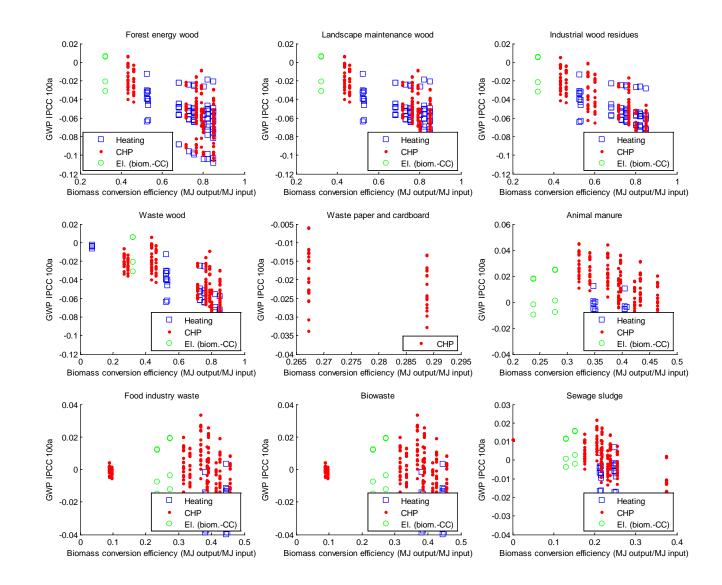

- Biomass availability
- Use of fossil energy technologies

Etc.

Spatial and temporal dimension ? (quasi-static) Uncertainties ?

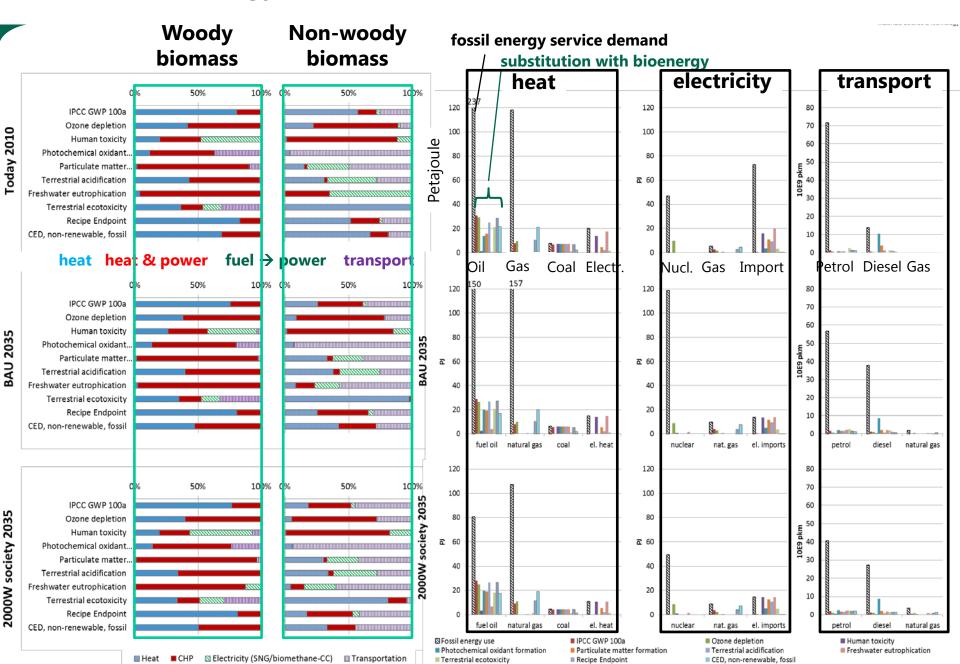
- inventories
- impacts assessment
- constraints, etc.

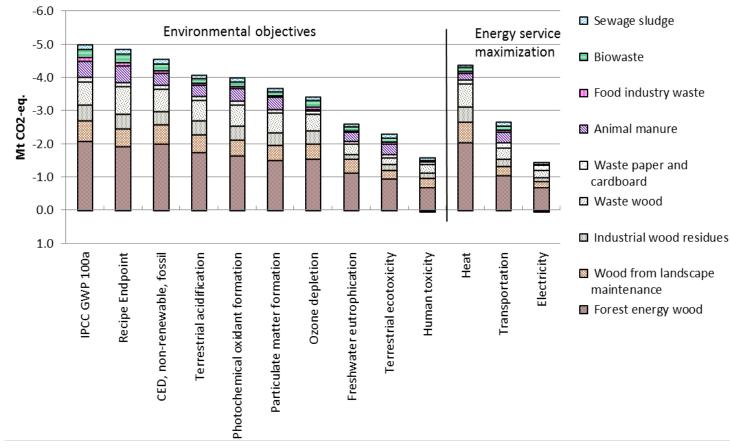
LCA-based System Optimization (LCA-SO) framework:



What kind of an assessment do we need to conduct to provide answers to the environmentally optimal use of bioenergy?

Results "Swiss case"


Biomass conversion efficiency and GWP


Bioenergy

Substitution

GHG mitigation potential, optimization objective, and feedstock contribution

- Trade-off between objectives
- max. GHG savings of 5 Mt \rightarrow 13% of CH's total emissions

CH-case

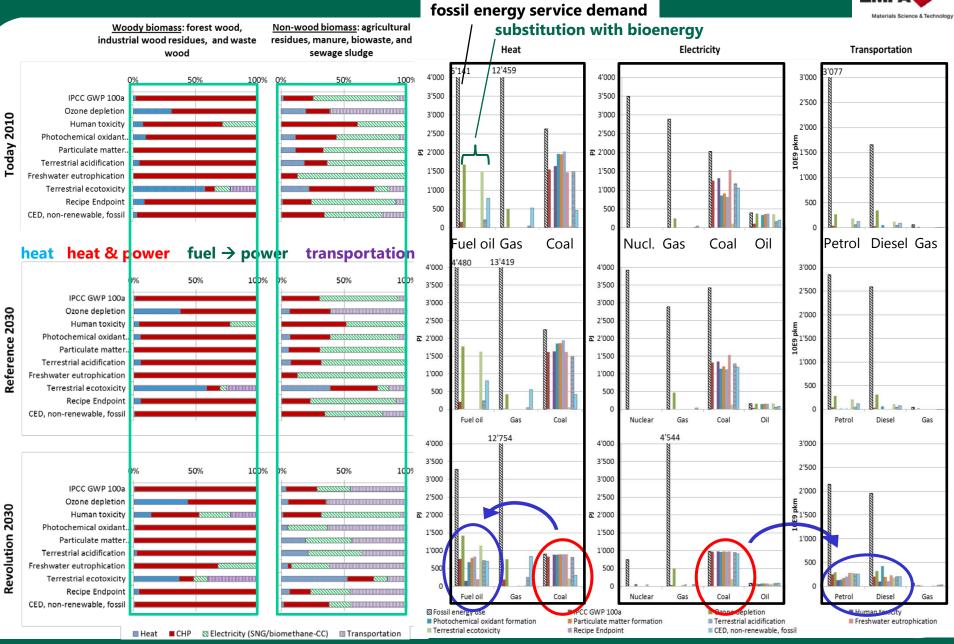
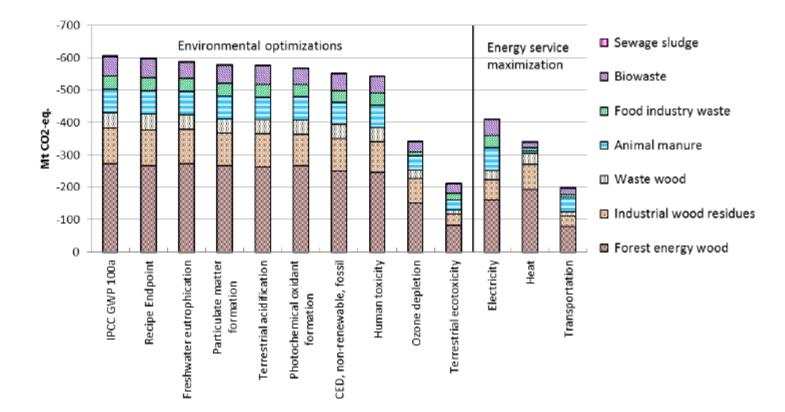

	Today (2010)			BAU 2035			2000W society 2035		
Optimization criterion	Heat	Electricity	Transp.	Heat	Electricity	Transp.	Heat	Electricity	Transp.
Heat	13%	0%	0%	16%	0%	0%	25%	0%	0%
Electricity	0%	18%	0%	0%	16%	0%	1%	22%	0%
Transportation	0%	0%	23%	0%	0%	25%	1%	0%	33%
IPCC GWP 100a	12%	2%	2%	13%	3%	3%	20%	4%	5%
Ozone depletion	10%	9%	1%	11%	8%	2%	18%	10%	4%
Human toxicity	6%	13%	0%	7%	10%	1%	9%	14%	1%
Photoch. oxidant formation	6%	3%	13%	8%	4%	11%	12%	5%	16%
Particulate matter formation	7%	9%	5%	9%	8%	4%	14%	12%	6%
Terrestrial acidification	9%	8%	2%	11%	6%	2%	16%	10%	3%
Freshwater eutrophication	7%	16%	0%	8%	11%	5%	11%	15%	7%
Terrestrial ecotoxicity	6%	3%	5%	7%	2%	5%	11%	5%	6%
Recipe Endpoint	12%	2%	2%	13%	3%	3%	20%	4%	5%
CED, non-renewable, fossil	12%	4%	2%	12%	6%	3%	18%	7%	6%

Table 4-5: Optimal share of fossil energy services substituted according to optimization criteria

Results "EU-case"


Results (EU)

GHG mitigation potential, optimization objective, and feedstock contribution

Trade-off between objectives

• max. GHG savings of 600 Mt \rightarrow 15% of EU's total emissions

EU-case

Table 5-3: Optimal share of fossil energy services substituted according to optimization criteria and scenario

	Today 2010			Reference 2030			Revolution 2030		
Optimization criterion	Heat	Electricity	Transp.	Heat	Electricity	Transp.	Heat	Electricity	Transp.
Heat	17%	0%	0%	17%	0%	0%	21%	0%	0%
Electricity	0%	19%	0%	0%	16%	0%	0%	26%	0%
Transportation	0%	0%	40%	0%	0%	34%	0%	0%	45%
IPCC GWP 100a	8%	16%	2%	9%	13%	1%	11%	17%	11%
Ozone depletion	11%	7%	13%	11%	6%	11%	13%	9%	15%
Human toxicity	8%	15%	0%	8%	13%	0%	6%	17%	6%
Photoch. oxidant formation	10%	14%	1%	9%	12%	1%	9%	16%	14%
Particulate matter formation	10%	15%	0%	9%	13%	0%	10%	17%	9%
Terrestrial acidification	10%	14%	0%	10%	12%	0%	10%	18%	8%
Freshwater eutrophication	7%	18%	0%	8%	15%	0%	6%	17%	13%
Terrestrial ecotoxicity	8%	5%	7%	8%	3%	6%	8%	4%	11%
Recipe Endpoint	9%	15%	2%	9%	13%	2%	10%	17%	11%
CED, non-renewable, fossil	9%	14%	5%	9%	13%	4%	11%	17%	11%

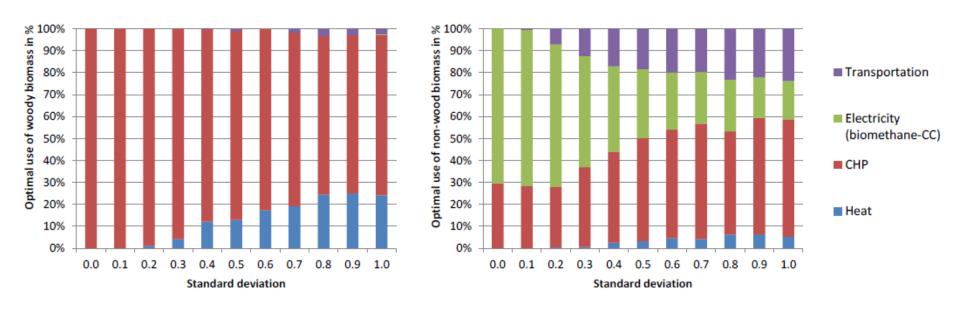


Fig. 5-5: Optimal use of woody (left) and non-woody (right) biomass for GWP IPCC 100a for heating, CHP, electricity generation, and transportation as a function of the assumed standard deviation