

Using parameteriation to handle combined & joint co-production

Presentation for the 48th Swiss LCA Discussion Forum Zürich, 2012.06.13.

Bo Weidema ecoinvent Centre Swiss Centre For Life Cycle Inventories

econvent

Content

- Combined and joint co-production
- Combined production: Modelling the physical relationships
- Joint production: Partitioning or substitution
- Parameters for allocation: Revenue or physical properties
- Allocation at the point of substitution
- Substitution: Modelling market constraints

ETH (Pf() EMPA C ART

Combined and joint co-production

- Variable output proportions: Combined production
 - \rightarrow subdivision according to physical relationships
- Fixed output proportions: Joint production
 - \rightarrow substitution (system expansion), or
 - \rightarrow partitioning (allocation)

Combined production: Modelling the physical relationships

- In v. 1 & 2:
 - Individual allocation property for each exchange, OR
 - One dataset per product: Manual subdivision
- In v. 3:
 - Mathematical relations from each exchange to the coproduct that causes the exchange: E = 2*A+3*B
 - Automatic subdivision of dataset: $E_A = 2A$ and $E_B = 3B$

Joint production: Partitioning or substitution

eco nvent

econvent

Trust in Transparency!

Parameters for allocation: Revenue or physical properties

- Two rationales:
- Revenue as the driver for the production ("economic causality")
- Physical output as the driver for the input
- Mutually exclusive: A choice has to be made
- One system model for each allocation algorithm:
- Prerequisite: allocation property present in all intermediate outputs
- Revenue = Price * Amount
- True value = Revenue * True value relation (e.g. exergy)
- Mass = Dry mass * Amount (not for LCA)
- Carbon = Mass * Carbon content (not for LCA)

ETH
(EPAL
FED
💡 EMPA
😲 art

Parameters for allocation: Revenue or physical properties

- Two rationales:
- Revenue as the driver for the production ("economic causality")
- Physical output as the driver for the input
- Mutually exclusive: A choice has to be made
- The ecoinvent default allocation a compromise:
- True value as allocation property
- Allocation correction for carbon: To ensure carbon balance

Parameters for allocation: Revenue or physical properties

- Two rationales:
- Revenue as the driver for the production ("economic causality")
- Physical output as the driver for the input
- Mutually exclusive: A choice has to be made
- The ecoinvent default allocation a compromise:
- True value as allocation property
- Allocation correction for carbon: To ensure carbon balance
- Why only for carbon?
 - Carbon is environmentally relevant both as input and output

Allocation - at the point of substitution:

- All treatment activities are attributed to the activities that produce the materials that need treatment, disregarding whether these are defined as wastes or by-products
- Allocation result unaffected by choices of the degree of detail (result cannot be manipulated by moving treatment in or out)
- The full value of the by-products is attributed to the product system that gives rise to these by-products (any valuecorrection unnecessary)
- Price of the by-product is always available (while the price of a waste or by-product before or during treatment often can only be estimated, and if available may often be influenced by irrelevant properties of other wastes or regulatory conditions)

- Technology level as a machine-interpretable activity field: Outdated, Old, Current, Modern, New (classification)
- System model algorithm identifies which of the technologies are unconstrained, i.e. are available for substitution in markets: in most cases "Modern" if available (depends on market trend)

econvent

ecoinvent Centre, c/o Empa, Lerchenfeldstrasse 5, CH-9014 St-Gallen, Switzerland

support@ecoinvent.org

www.ecoinvent.org Trust in Transparency!

ART