

Swiss Centre for Life Cycle Inventories

econvent Centre

Slide 2

Swiss Centre For Life Cycle Inventories

ETH

FPF

彦 EMPA

ART

ecoinvent v3 – Internationalization of the data supply and international collaborations

ecoinvent as a global database

- ecoinvent started as a Swiss database
- International supply chains demanded international data collection
- Now the most used global database of known quality
- Growth can be **problematic**:
 - Data for different regions benefit from local expertise
 - International data collection ideally organized in a collaboration of regional data collection networks

- Collaboration with CIRAIG in Canada to build an LCI database for Québec
- Data are being integrated into the existing global supply chains provided by ecoinvent version 3
- Local data collection efforts can rely on global background data and grow organically into local process systems
- Other collaborations are in planning or are already submitting first datasets

econvent

LCA in emerging economies

- Fast-growing demand for LCA and related techniques in emerging economies
- International users will benefit greatly from global supply chain data in several sectors
- LCA-based regulations in developed countries may cause international trade disputes

→ Strong demand for local LCI data and expertise

Local level of expertise in LC-based methods can be low, little experience with LCI data collection

ETH
(PA)
FED
💡 EMPA

ART

Cooperation of LCI initiatives

- Cooperation with several emerging economies to support LCI networks in developing countries, supported by the Swiss government (SECO)
- Use existing expertise of ecoinvent starting out as the Swiss LCI network
- The goal is to:
 - Build expertise on life cycle thinking and LCA
 - Create capacity for LCI data collection
 - Create background data for local (and global) studies
 - Grow into self-sustaining regional LCI competence centres

ETH (Pf(CE) EMPA CT ART

Problems of starting LCI networks

- Local level of expertise in life cycle-based methods can be low
 - Little experience with LCI data collection
- Lack of local environmental studies compared to developed countries, so less basis for background data
 - Local conditions can differ significantly from other regions
- Inventory databases need a certain "critical mass" to be useful
 - Gaps in process chains will introduce errors in the results

🤗 EMPA

ART

Swiss Centre

Building capacity

Experts and experienced practitioners needed

- Workshops in India, Brazil, South Africa
- Regular communication and discussion of problems
- Guidance for data creation necessary
 - Software tool with automatic pre-validation
 - Documents and videos to guide beginning data creators
- Informing and involving stakeholders

Data availability

- Environmental studies are scarce
 - Industry often very motivated to share data
- Technological differences can be significant
- Cottage-scale industries, e.g. silk reeling
 - Significant differences from larger-scale operations
- Waste management
 - Existing waste treatment models not directly adaptable

Case study: Coal power

Coal power constitutes ~ 70% of Indian generation

Swiss Centre For Life Cycle

	Germany	India	inventorie
Calorific value of burned coal	27.7 MJ/kg	15.7 MJ/kg	ETH (fPfl
Emission abatement	Desulphurisation, denitrification, and dedusting operating in most power plants	In most power plants only dedusting	CE CE EMPA C ART
CO ₂	92 g/MJ coal	96 g/MJ coal	
NO _x	0.06 g/MJ coal	0.63 g/MJ coal	
SO ₂	0.07 g/MJ coal	0.89 g/MJ coal	
PM _{2.5}	0.005 g/MJ coal	0.202 g/MJ coal	
Net efficiency of power plant	36 %	32 %	

Case study: Coal power

eco, nvent

Case study: Coal power

- Similarities
 - Dataset structure
 - Some values (efficiency, CO₂)
- Differences
- Existing datasets proved a helpful resource
 - Mathematical relations & Child datasets simplify changes

Coal power: Child datasets

- Start out as copy of the parent
- Values can be changed relative to the parent or overwritten completely
- Optional independent datasets can serve the same function

Exchange			electricity production,			
Туре 🗠	Name	Unit	Compartment	Amount	Variable Name	Mathematical Relation
0 - Referenc	electricity, high voltage	kWh		7		
2 · ByProdu	residue from cooling tower,	kg		<i>f</i> ∗ 0.000424	amount_residue	ParentValue * 8 💦 🥆
2 - ByProdu	hard coal ash, 0% water	kg		<i>f</i> ∡ 0.056794	amount_ash	ParentValue * 1.2 💦 🥆
4 - ToEnviro	Lead-210	kBq	air	9.66173170		
4 · ToEnviro	Cobalt	kg	air	1. 15031444		
4 - ToEnviro	Selenium	kg	air	4.09224628		
4 - ToEnviro	Propene	kg	air	2.95071439		
4 - ToEnviro	Methane, dichloro-, HCC-30	kg	air	2.71338586		
4 - ToEnviro	Strontium	kg	air	5.02695308		

LCI database creation

- Without background data, life cycle-based assessments are virtually impossible or highly flawed
 - Several critical sectors occur in virtually all life cycles
- Solution: Integrate into existing database
 - Framework of an existing dataset simplifies data collection for inexperienced users
 - Local datasets can fall back on global background data with higher uncertainty until local inputs become available
 - Updates integrated into supply chains automatically
 - Data collection results can be applied immediately for first screening results

Swiss Centre For Life Cycle Inventories

econvent

Conclusions

- The ecoinvent Centre is building a network of collaboration partners
- We wish to support other LCI initiatives by offering our structure and experience
- Integrating with existing data helps to create datasets and to reach critical mass for high quality database
- Transparent unit-process inventory modeling facilitates cooperation and data exchange

Thank you for your attention!

Swiss Centre For Life Cycle Inventories

We thank the Swiss State Secretariat for Economic

Affairs (SECO) for their support in this project.

www.ecoinvent.org