

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs FDEA Agroscope Reckenholz-Tänikon Research Station ART

Size & site matter The case of rivers

D.Tendall

LCA DF50 - 4 Dec. 2012

The case of rivers

- Impacts of river water withdrawals on aquatic biodiversity (fish)
- Based on species-discharge relationship (SDR)
- Assumptions:
 - Marginal effect
 - Discharge at mouth = best case
 - Total volume, wherever the withdrawal

$$CF = \frac{dQ}{dW} * \left(\frac{dR}{R^* dQ} V\right) \quad [PDF^*m^{3*}y/m^3]$$

*Hanafiah, M.M. et al. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ. Sci. Tech., 2011.

Water in LCA | Size & site matter: the case of rivers D.Tendall | © Agroscope Reckenholz-Tänikon Research Station ART

Size and site

- Biodiversity in a smaller river is more affected than in a larger river, for the same amount withdrawn
 - But only «best-case» effect is considered...
 - → Size of river matters?
- Biodiversity in basin may be less affected by a withdrawal close to mouth than by a withdrawal near headwaters
 - Smaller portion of river affected downstream & lack of water is not transferred upstream
 - → Site of withdrawal important?

Possible solution

- Assume withdrawal only affects downstream river portion
- Aggregate effects occurring downstream:
 - \rightarrow Higher impact for a withdrawal located further upstream
- Zones: assume distinct species (eg. Huet et al. 1949 for Europe)

Adapted SDR

- SDR verified also for zones rather than basins (for CH)
- Can aggregate impacts for each zone downstream (eg. 1, 2, 3) without doublecounting

$$CF_{j} = \sum_{i=j}^{mouth} \left(\frac{dSR_{i}}{dQ} \right)$$

 Impact = potential species lost, as equivalents of global extinctions «GSEE»

Application example

- Withdrawals for irrigation in Broye subbasin (Rhine) x40 in 2050*:
 - 1.46m³/s = 12% Broye (non-marginal),
 0.06% Rhine (marginal)
 - Impact: 1.34E-4 GSEE
 - If withdrawn near mouth of Rhine:
 5.13E-5 GSEE
 - Difference ~1 order of magnitude
- Variation between global basins (original method): also ~1 order of magnitude
- → Variation within basin ≈ variation between global basins?
 - *AGWAM project, NRP61: www.nrp61.ch

Implications

Characterization factors:

- Is zonation possible for other regions/taxa?
- Is the SDR for zones verified for other regions/taxa?
- Spatially explicit CFs (eg. raster) for each withdrawal location = zone in each river.

Impacts:

- In global species extinction equivalents rather than fraction lost * volume affected
- Can be aggregated if using a consensus unit...

Inventory:

- Need to know water source type (river)
- Need to know spatial location

Discussion points

- Impact modeling of river water use in LCA:
 - Should be regionalized... but just how much?
 - How complete should pathway coverage be?
 - Still a lot of effort to cover missing pathways...
 - How can impacts from different models be compared?

Water in LCA | Size & site matter: the case of rivers D.Tendall | © Agroscope Reckenholz-Tänikon Research Station ART

Thanks!

danielle.tendall@art.admin.ch