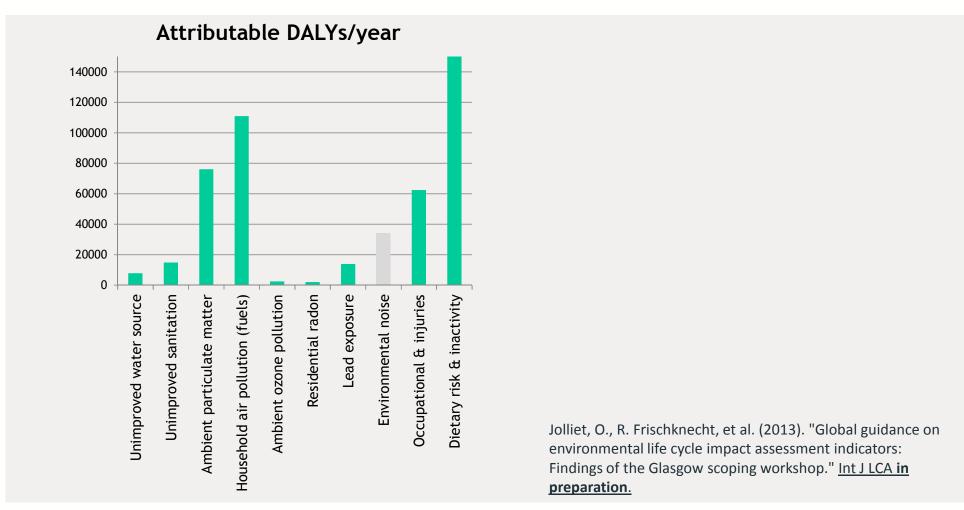
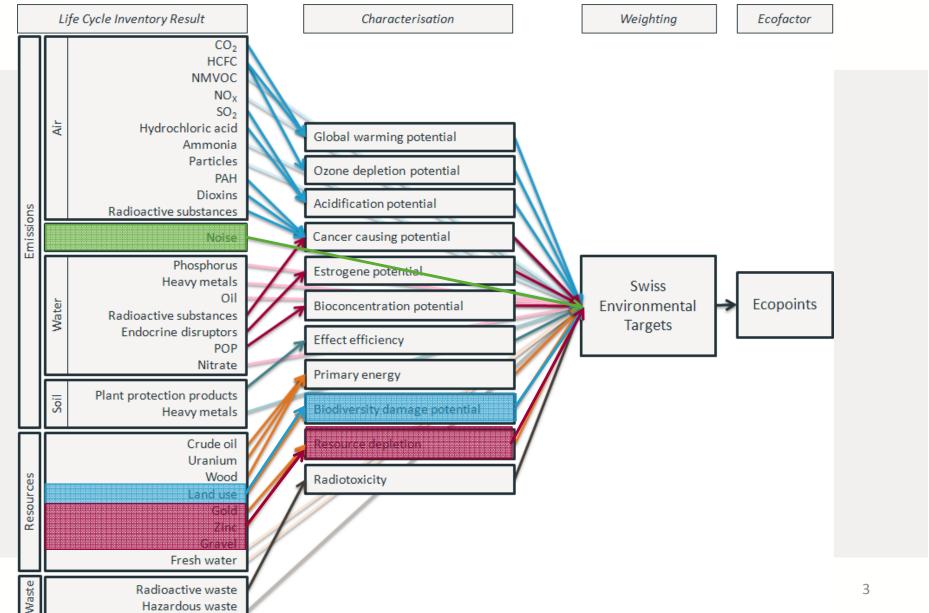


New approaches in MoeK 13: global land use noise abiotic resources

Sybille Büsser Knöpfel, Rolf Frischknecht treeze Ltd., Uster DF 54, 5.12.2013


Basic scheme Swiss ecofactors '13



Environmental relevance: human health

Basic scheme Swiss ecofactors '13

Global land use

Eco-factor Swiss settlement area

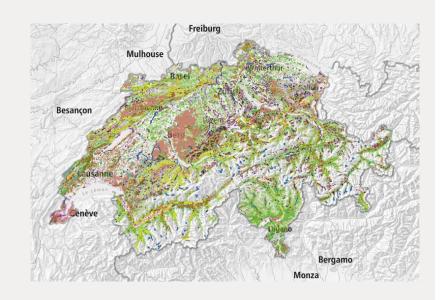
	Edition 2013	Edition 2006
Normalization (km²*a SA-eq.)	2'437	3'378
Current Flow (km²)	3'027	2'791
Critical Flow (km²)	3'535	3'224
Weighting (-)	0.73	0.749
Eco-factor (EP/(m ² *a SA-eq.))	300	220

- Current flow: Swiss settlement area
- Critical flow: Sustainability goal: 400 m² per inhabitant, future population in 2035
- Normalization: characterized settlement area

Characterization factors

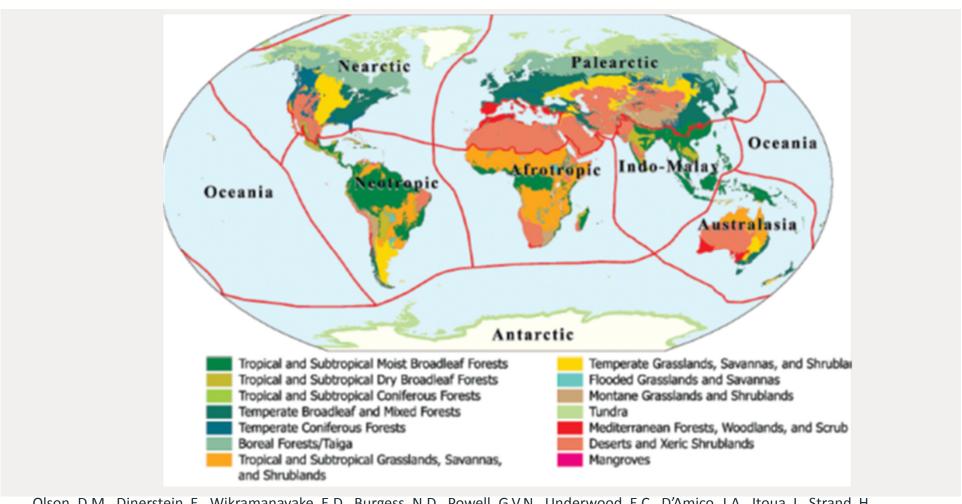
- Characterization factors are based on the biodiversity damage potential (BDP)
- Ratio of anticipated number of species and the actually encountered number of species
- Considers plants, vertebrates, invertebrates
- Global average BDPs, according to de Baan et al.
 (2012)
- Reference «substance» is the urban settlement area

Characterization factors



CORINE+	Land use types	BDP	Characterization factor (m²a SA-eq./m²a)
	Settlement areas		
111	Occupation, urban, continuously built	0.44	1.00
112	Occupation, urban, discontinuously built	0.26	0.59
113	Occupation, urban fallow	0.00	0.00
114	Occupation, rural settlement	0.26	0.59
121	Occupation, industrial area	0.44	1.00
	Agricultural areas		
211	Occupation, arable, non-irrigated	0.60	1.40
211c	Occupation, arable, organic	0.21	0.49
22	Occupation, permanent crop	0.42	0.95
231	Occupation, pasture and meadow	0.33	0.75
244	Occupation, agro-forestry areas	0.20	0.45
	Forests and shrubs		
311	Occupation, broad leafed forest	0.04	0.10
312	Occupation, coniferous forest	0.04	0.10
312a	Occupation, coniferous plantations	0.18	0.41
312b	Occupation, semi-natural coniferous forests	0.00	0.00
313	Occupation, mixed forest	0.04	0.10

Swiss eco-factors


- Characterization factors
- Eco-factor for Swiss settlement area
- Eco-factors for several land use types valid for Switzerland

-> Extrapolation to global land use

Concept of 14 Bioms

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R., Terrestrial ecoregions of the world: a new map of life on earth. Bioscience, 2001. 51: p. 933–938.

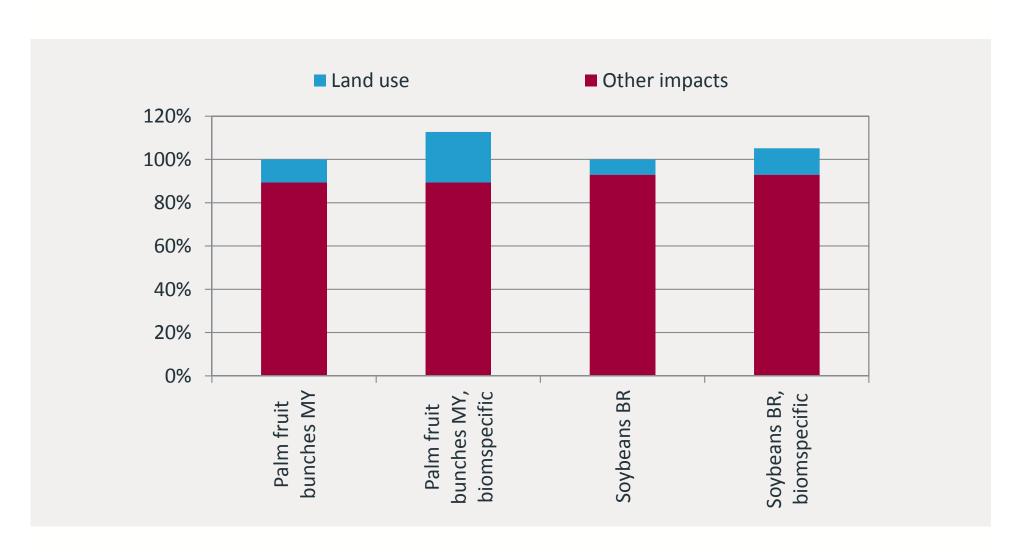
Extrapolation

- Extrapolation of characterization factors to all biomes over plant biodiversity (Kier et al. 2005)
- Reference «Biome» is Biome 5 (Switzerland)

		Ratio to Biome 5
Biom 1	Tropical and subtropical moist broadleaf forests	1.968
Biom 5	Temperate coniferous forests	1.0
Biom 7	Tropical and subtropical grasslands, savannas and shrublands	0.788
Biom 10	Montane grasslands and shrublands	0.839
Biom 11	Tundra	0.209
Biom 12	Mediterranean forests, woodlands and scrub	1.440
Biom 13	Deserts and xeric shrublands	0.526

Resulting Eco-factors

CORINE+	Land use types	Biom 1	Biom 5	Biom 8	Biom 11	Biom 13	Edition 2006
		(UBP/m2)	(UBP/m2)	(UBP/m2)	(UBP/m2)	(UBP/m2)	(UBP/m2)
		Tropical and	Temperate	Temperate	Tundra	Deserts and	
		subtropical	coniferous	grasslands,		xeric	
		moist	forests	savannas		shrublands	
		broadleaf		and			
		forests		shrublands			
	Settlement areas						
111	Occupation, urban, continuously built	600	300	240	250	420	260
112	Occupation, urban, discontinuously built	360	180	140	150	250	220
114	Occupation, rural settlement	360	180	140	150	250	190
121	Occupation, industrial area	600	300	240	250	420	220
	Agricultural areas						
211	Occupation, arable, non-irrigated	810	420	330	330	600	100
211c	Occupation, arable, organic	290	150	110	120	210	59
22	Occupation, permanent crop	570	290	230	240	420	29
231	Occupation, pasture and meadow	450	230	180	190	330	57
244	Occupation, agro-forestry areas	270	140	110	110	200	-
	Forests and shrubs						
311	Occupation, broad leafed forest	60	30	24	26	45	15
312	Occupation, coniferous forest	60	30	24	26	45	15
312a	Occupation, coniferous plantations	240	120	96	100	180	100


Implementation

- Introduce biomspecific land-use types (elementary flows) in your database
- Use them in the foreground data
- Adapt important background datasets

Example

Noise

Definition and health effects

- «unwanted sound» that can have a physical, mental, social or economic impact on the population exposed to it
- Noise is a physical phenomenon
 - measureable (decibel, dB)
- its perception is individual in nature and it therefore includes a socio-psychological component
 - corrected for the sensitivity of the human ear (Aweighting, dB(A), dB A)

Noise

- Individual eco-factors for noise from
 - Road traffic
 - Rail traffic
 - Air traffic
- Other sources of noise are not considered

Eco-factor «HA persons»

	Road	Rail	Air
Normalization (HAp/a)	800'000	800'000	800'000
Current Flow (HAp/a)	716′000	61'000	27′000
Critical Flow (HAp/a)	436'000	33'000	15'000
Weighting (-)	2.7	3.5	3.3
Eco-factor (EP/HAp)	3'400'000	4'300'000	4'100'000

HAp: highly annoyed person

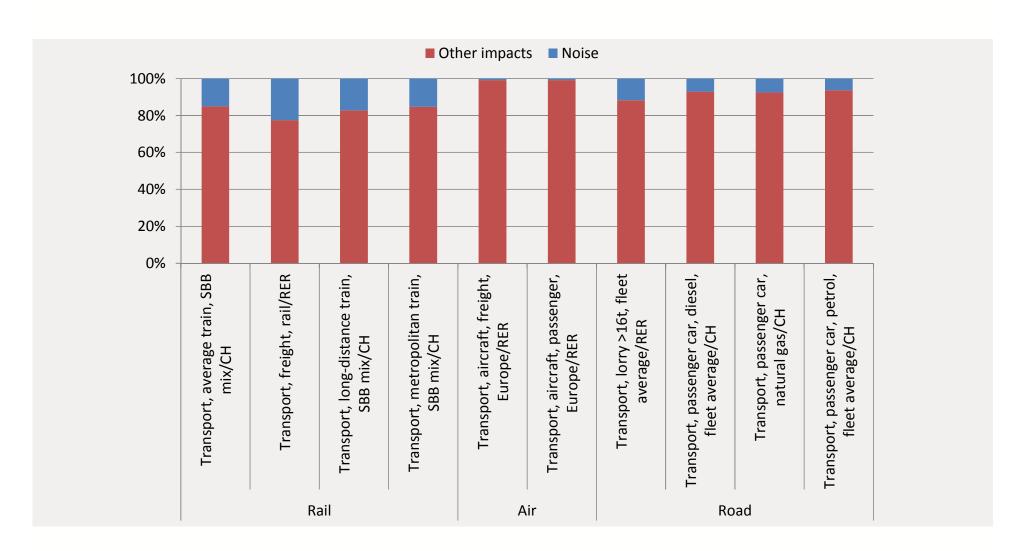
- Normalization: HAp of traffic noise
- Current flow: SonBASE, exposure-response curves according to EEA
- Critical flow: HAp if noise pollution is reduced by 5 dB(A)

Implementation

- Introduction of new elementary flows
 - → «noise kilometer»
- Added to traffic operation datasets

Elementary flow	Unit
Noise, aircraft, passenger	pkm
Noise, aircraft, freight	tkm
Noise, rail, passenger train, average	pkm
Noise, rail, freight train	tkm
Noise, road, passenger car, average	km
Noise, road, lorry, average	km

Eco-factor «noise kilometer»



Eco-factors are calculated based on eco-factors for whighly annoyed» persons, traffic performance and average noise level of each transportation mean

Elementary flow	Unit	Eco-factor
Noise, aircraft, passenger	EP/pkm	1.4
Noise, aircraft, freight	EP/tkm	14
Noise, rail, passenger train, average	EP/pkm	5.2
Noise, rail, freight train	EP/tkm	15
Noise, road, passenger car, average	EP/km	21
Noise, road, lorry, average	EP/km	210


Examples

Environmental impacts in Switzerland (UBP'13)

«Quiet» and «loud» vehicles

An increase of the sound level by 3 dB corresponds to a doubling (factor = 2) of sound intensity

- Adapt «noise kilometer» in inventory:
 e.g. if your car is 3 dB louder as the
 average (72 dB) apply
 2 instead of 1 «noise kilometer»
 per kilometer driven
- Average noise levels of cars, trains and airplanes are given in the report

Pegeländerung (dB)	Faktor
-5	0.32
-4	0.40
-3	0.50
-2	0.63
-1	0.79
0	1.00
1	1.26
2	1.58
3	2.00
4	2.51
5	3.16
6	3.98
7	5.01
8	6.31
9	7.94
10	10.00

Abiotic resources (minerals & metals)

Political goal

- Switzerland should reduce its resource consumption to sustainable levels (Federal Council's cleantech strategy)
- The Swiss federal government is promoting actions within the current "Measure 4b" (integrated product policy) to close material cycles

Characterization

- Approach: Annual depletion of reserves
 - → scarcity of a specific resource

•
$$CF = \frac{Yearly\ production}{Reserves^2}$$
 (Guinée et al. 2001)

- Updated based on Mineral Commodity Summaries 2010, U.S. Geological Survey
- Reference substance: Antimony

Eco-factor abiotic resources

	Edition 2013
Normalization (t Sb-eq)	904
Current Flow (t Sb-eq)	904
Critical Flow (t Sb-eq)	904
Weighting (-)	1.0
Eco-factor (EP/t Sb-eq)	1'100

- Current flow: per capita world production of metals and minerals, multiplied with Swiss population
- Critical flow: Status quo (no increase)

Resulting Eco-factors

Substance	Specification	Characterization (kg/kg Sb-eq.)	Eco-factor (UBP/kg)
Metals			
Copper	1.18% in sulfide, Cu 0.39% and Mo 8.2E-3% in crude ore	0.0010	1'100
Chromium	25.5% in chromite, 11.6% in crude ore	0.0043	4'800
Lead	5.0% in sulfide, Pb 3.0%, Zn, Ag, Cd, In	0.015	17'000
Tantalum	81.9% in tantalum, 1.6E-4% in crude ore	1.33	1'500'000
Silver	3.2 ppm in sulfide, Ag 1.2 ppm, Cu and Te, in crude ore	2.05	2'300'000
Gold	4.9E-5% in ore	23.1	26'000'000
Minerals			
Gypsum		0.00001	6.30
Phosphorus	18% in apatite, 4% in crude ore	0.00006	62.0
Sulfur		0.00007	72.0

Application

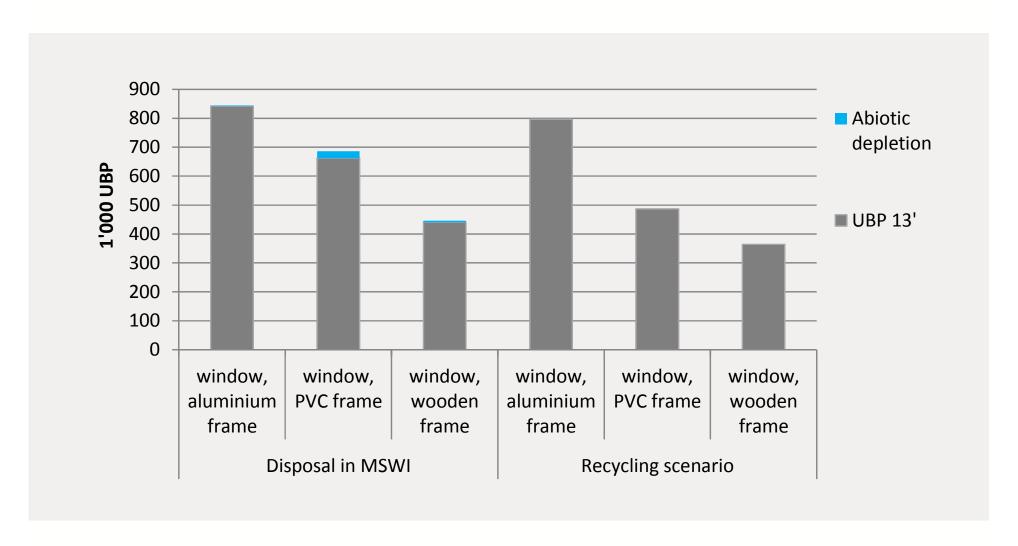
- Based on the target the eco-factors should not address the extraction of a resource but the dissipative use only
- Dissipative use = materials are degraded, dispersed and lost in the course of usage and no longer available for future usage
- Remaining portion is only «on loan»
- → Eco-factors are applied to the difference between resource extraction and recycled resources

$$EIR = R_{ex} \times ef_R - R_{rec} \times ef_R = R_{diss} \times ef_R + R_{landf} \times ef_R$$

EIR: environmental impact of the resource

R_{ex}: amount of resource extracted

R_{rec}: amount of resource recycled


R_{diss}: amount of resource dissipated to nature (emitted to air, water, soil)

R_{landf}: amount of resource landfilled

ef_R: eco-factor of the resource ("resource depletion" only, not including environmental impacts caused during mining etc).

Example window frame

Download

- as .csv for import in SimaPro
- as .xml for import in other softwares
- read instructions !!

www.treeze.ch/projects/methodology-development/life-cycleimpact-assessment/ecological-scarcity-method-2013/

Thank you very much for your attention!

Contact:

buesser@treeze.ch

Website:

www.treeze.ch

Acknowledgement:

Funding: Swiss Federal Office for the Environment FOEN, Öbu

Co-operation (until 10.2012): Karin Flury, Matthias Stucki

Suggestions, preparatory work and practical tests:

Advisory group, Hans Bögli, Laura de Baan, Fredy Dinkel, Emil Franov, Paul Filliger, Ernst Furrer, Daniel Hartmann, Bettina Hitzfeld, Blaise Horisberger, Michael Hügi, Harald Jenk, Sybille Kilchmann, Martin Kilga, Thomas Köllner, Nina Mahler, Sandy Ruiz Mendoza, Reto Muralt, Beat Müller, Carla Ng, Christian Pillonel, Robin Quartier, Monika Schaffner, Kaarina Schenk, Martin Scheringer, Ulrich Sieber, Peter Straehl, Josef Tremp, Roland von Arx

Appendix

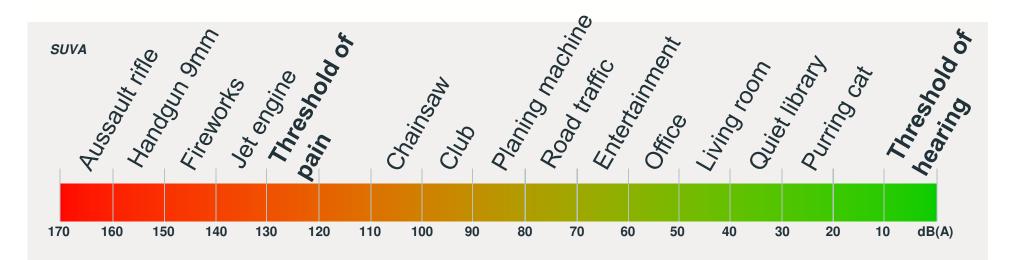
Calculation eco-factors for noise kilometer

	Unit	Road traffic		Railway traffic		Air traffic	
		People	Freight	People	Freight	People	Freight
Number of adversely affected people,	AAP	720,	000	61,0	000	27,0	000
Distance travelled	vkm	5.59*10 ¹⁰	5.87*10 ⁹	1.83*108	3.00*107	6.57*10 ⁹	1.45*10 ⁹
Number of greatly disurbed persons	AAP/vkm	6.25*10-6	6.25*10 ⁻⁵	1.26*10-4	1.26*10 ⁻³	3.39*10-6	3.39*10-6
Number of adversely affected people	AAP/km	6.25*10-6	6.25*10-5				
Number of adversely affected people	AAP/pkm			1.20*10-6		3.39*10-7	
Number of adversely affected people	AAP/tkm				3.42*10-6		3.39*10-6
Eco-factors road traffic	UBP/km	21	210				
Eco-factors passenger kilometre	UBP/pkm			5.2		1.4	
Eco-factors tonne kilometre	UBP/tkm				15		14

AAP: adversely affected people, km: vehicle kilometre, pkm: passenger kilometre, tkm: tonne kilometre

To allocate the number of adversely affected people to passenger and freight transportation by road and railway, the distance traveled to transport freight is multiplied by a factor of 10, as the noise level of trucks and freight trains is around 10 dB higher than the noise level of passenger cars and trains.

Characterization Swiss forest



- Natural forest (BDP = 0), Used forest (BDP = 0.18)
- Which part of Swiss forest is «natural forest» and which part is «used forest»?
- 54% of Swiss forest has a high «Biotopwert» (Brändli 2010)
- Multifunctionality: economic allocation between willingness to pay and gross value added
- BDP of Swiss average forest is 0.04

Brändli, U.-B.R. (2010), Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006., 2010, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL. Bundesamt für Umwelt BAFU: Birmensdorf, Bern.

Noise Levels

Means of transportation		Noise level	Notes
Road, passenger cars	dB(A)	72	Lmax, according to RWTÜV Fahrzeug GmbH
Road, trucks, 150 – 250 kW	dB(A)	81	(2005), free flowing traffic at 50 km/h
Railway, ICN, 140 kmh	dB(A)	55.8	Leq (16h) according to SonRail (BAFU 2012f),
Railway, freight train	dB(A)	65.9	single pass, distance: 1 meter with moderate rail roughness and concrete sleepers
Airplane, A320, take-off	dB(A)	47.9	Leq (16h) according to SANCDB (BAFU 2012f),
Airplane, B747, take-off	dB(A)	59.5	distance: 300 metres