

An environmental perspective on the management of wood in Switzerland

LCF DF: Environmental use of wood resources December 4th 2015

Starting point

- Wood is large sink for carbon dioxide and renewable resource suitable for various material and energy purposes
- Sustainable use of wood can lower impacts on climate change an can reduce demand for non-renewable resources
- Increasing wood stocks in Swiss and European forests
 - Net increments higher than harvesting
- Need for new strategies facilitating a sustainable wood mobilisation and use

Goals

- Environmental assessment of the wood value chain
 - Systemic perspective on current wood use in Switzerland
- Analysis of wood sourcing contribution to overall process impacts
 - Current cascading potential of wood (wood-wood substitution)
- Environmental evaluation of wood performance
 - Current substitution potential of wood
- Discuss learnings to provide guidance for environmentally sustainable use of wood

Part I: Environmental assessment of the wood value chain in Switzerland

- Combination of material flow analysis and life cycle assessment
- Systemic perspective on wood use in industry sectors
- MFA data: Statistics of federal offices and industry associations
- LCA data: ecoinvent v3.1 in the cut-off allocation system

ecological systems design

Environmental impacts from wood consumption

National Research Programme NRP 66

Florian Suter | 29.12.15 | 6

Part II: Contribution of wood sourcing

- Impacts from primary wood provisioning compared to total product impacts
 - Impacts to the point of harvesting
- Indication for impact reductions that could be achieved by current cascading of wood
 - Replacing primary wood by waste wood

Assumptions

- Waste wood is burden free
- No adaptations in production processes

Contribution of primary wood provisioning on overall process impacts

Part III: Current environmental performance of wood

- Comparison of impacts from functionally equivalent wood and non-wood products
- Point of substitution on the level of semi-finished products
- Recycling, incineration and landfilling as end of life options

Assumptions

- Substitution of current product specific market mix
- Identical lifetimes for wood and non-wood products
- No losses in end of life processing

Impacts and benefits from substitution of current market mix: climate change

THzürich

National Research Programme NRP 66

Carbon displacement factors

Displacement factor = *GHG*↓*non*−*wood* product − *GHG*↓*wood product /wood_amount↓wood product*

Displacement factor	t CO2-eq/m3 wood
material application only	0.26
end of life only	0.21
material application plus end of life	0.47
energy application only	0.44
all applications including end of life	0.45

Key findings

- Wood use contributes to the reduction of GHG-emissions and the fossil CED
- Environmental performance of wood is highly dependent on environmental indicators and the type of use
- Today, environmental effects from the replacement of primary wood by waste wood are small
- Wood cascading can be beneficial in case that additional energy intense materials are replaced and an efficient use of energy at the end is not affected

Recommendations

- Use more wood but take care of potential negative environmental effects (particulate matter, biodiversity)
- Use wood wisely (avoid losses and contaminations) to allow for an efficient energy use at the end of life
- Use wood in applications where it can replace energy and resource intensive materials (construction, furniture, energy)
- Be aware of opposing environmental effects

Outlook

- Highlight sensitivities and calculate future scenarios
 - Energy substitution and incineration efficiencies
 - Effects from waste wood losses in cascading
 - Changes in wood use
- Environmental impacts from international wood trade
 - Region specific impacts on biodiversity from wood imports to Switzerland

Acknowledgements

This research was funded within the **National Research Program «Resource Wood» (NRP 66)** by the Swiss National Science Foundation (project no. 136612)

Project partners

ETH zürich

Backup slides

Florian Suter | 29.12.15 | 16

Wood process perspective

Wood product perspective

Resource Wood National Research Programme NRP 66

ETH zürich

Impacts and benefits from substitution of current market mix: particulate matter

www.ifu.ethz.ch/ESD

Resource Wood National Research Programme NRP 66

Assumptions for calculation of displacement factors

- Paper sector not considered
- Heat from incineration of internally produced wood residues is not considered
- Carbon storage effects neglected (no time axis)
- No differences between consumed products from domestic production or production abroad

