

How to derive a consequential national electricity mix: The case of a Swiss municipality

Rolf Frischknecht, treeze Ltd.

62nd LCA Forum, ETH Zürich, Switzerland, 9 September, 2016

Municipality with 2000-Wattsociety goals

- Municipality wants to achieve
 - 2000 Watt continuous power (primary energy) per person
 - 1 Ton CO₂ emissions per person and year
- Different strategies
 - Efficiency

do the same with less consumption

- Substitution / Consistency do the same but differently (with renewable energies)
- Sufficiency use less («less is more»)

EnergieSchweiz für Gemeinden

2000-Watt-society goals: Large reduction is required

Motivation of a municipality to use a consequential LCA approach

- Longterm investment decisions in real estates
- Requirements
 - Comply with the goals of the 2000-Watt-society
 - Real estate strategy independent of shortterm energy-related changes
- Environmental impacts of buildings are determined by:
 - longterm: energy efficiency level (construction/retrofit)
 - shortterm: electricity product, fuel

Longterm perspective

- Energy-related investments today have an impact on the future energy demand
 - Savings due to effective efficiency measures
 - Increase in electricity demand due to substitution of fossil fuels (fuel oil, natural gas) with electric heat pumps

Marginal electricity approach

 enables longterm perspective by modelling the future consequences of decisions

Marginal electricity mixes: Derivation

- No general or partial equilibrium model but coarse sectoral consideration
- Which technologies likely produce more/less electricity in the future?
- If electricity is used more efficiently:
 - Non renewable power plants don't need to be expanded or can be shut down
 - Import of non renewable electricity can be reduced
 - Export of excess renewable electricity

Marginal electricity mixes: Two main thinking models

- Swiss consequential electricity mix
- European residual electricity mix

Switzerland: Energy strategy 2050 Development in electricity demand

How would additional demand in electricity be covered?

The future of electricity according to the Energy strategy 2050

eeze

fair life cycle thinking

[>]rognos (2012)

Consequential electricity mix Switzerland

- Energy strategy 2050, 3 scenarios: BAU, NEP, POM
- Additional electricity demand of the BAU scenario is covered to 99 % with Swiss natural gas power plants (mostly combined cycle plants).
- Consequential electricity mix Switzerland = 100 % electricity from gas combined cycle plants

Residual electricity mix Europe

- Power plant portfolio of the utility of the municipality: hydro, wind parks, photovoltaics
- Decrease in electricity demand in the municipality
 → more export of renewable electricity
- Substitute fossil and nuclear electricity and help shutting down its power plants
- Residual electricity mix based on todays operated fossil and nuclear power plant park

Two Scenario: What happens if ...?

Consequential mix Switzerland

- Potential of new renewables is limited
- Efficient use of electricity requires less fossil fuelled power plants in Switzerland

Residual mix Europe («bad mix»)

- Export of electricity from renewable sources which is no longer needed in Switzerland
- Opportunity for the EU to reach their reduction targets regarding climate protection and nuclear phase out

Case study retirement home «Tilia»: Retrofit yes or no?

- Retirement apartments, shops, café and car park
- Built in the 70ies

• Key parameters:

Parameter	Unit	lst
Gross area	m ²	10'000
Energy reference area	m²	10'000
Energy demand		
Space heating	MJ/m ² a 435	
Hot water	MJ/m ² a	50
Ventilation	MJ/m ² a	-

The easy way: Heat pump and green electricity

Greenhouse gas emissions

Environmental impacts

Case study retirement home «Tilia»: Retrofit measures

- new windows (triple glazing)
- Insulation façade
- Insulation rooftop and ground floor (car park ceiling)
- Ventilation equipment

Energy demand	unit	today	retrofit
Space heating	MJ/m²a	435	68
Hot water	MJ/m²a	50	50
Ventilation	MJ/m²a	-	10

Tilia: Total environmental impacts Current state and retrofit

fair life cycle thinking

Discussion

- Applying consequential mixes in investment situations:
 - Retrofit is the preferred option
 - A switch from district heating to heat pump without any energy saving measures leads to an increase in environmental burdens
- Applying attributional electricity mix (ecopower):
 - current state with heat pump is preferred
 - \rightarrow low incentive to invest in efficiency measures
 - \rightarrow contradicts longterm perspective

Conclusions

- Consequential mix Switzerland and residual mix Europe are likewise recommended to support investment decisions to support the 2000-Watt-society goals
 - Operation phase becomes more important
 - Structural measures reducing the energy demand in the operation phase pay-off sooner
- Similar considerations required for district heating networks and traditional fuels (fuel oil, natural gas, wood)

Thank you very much for your attention!

Contact: <u>frischknecht@treeze.ch</u>

> Website: <u>www.treeze.ch</u>

Acknowledgement (funding): Swiss municipality