

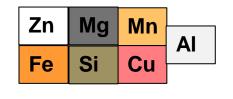
63rd LCA Discussion Forum – 30.11.2016

Challenges in LCA modelling of multiple loops for aluminium cans

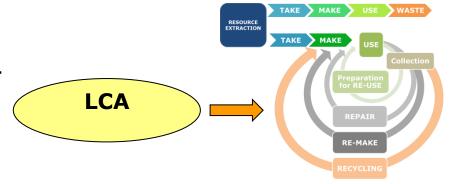
Monia Niero, Stig I. Olsen

Outline

• Introduction:


Put the research into context

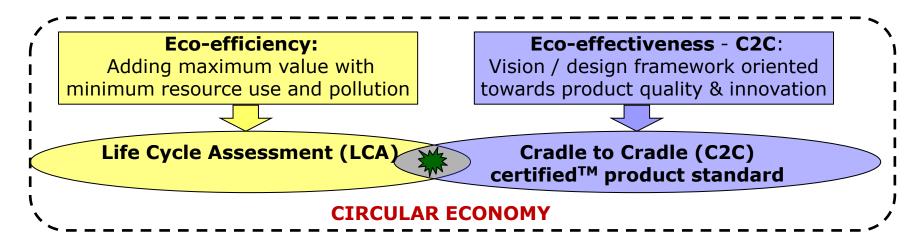
• Case study:


LCA modelling of multiple loops for aluminium cans

• Perspective:

How can LCA support the circular economy?

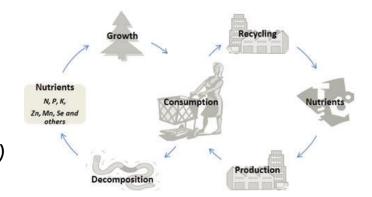
Aim of the project


• Vision:

Support **Carlsberg** in the development of **environmentally sustainable and innovative** beer packaging solutions

· Objective:

Combine Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) design framework towards continuous loop packaging systems



How can the C2C vision inspire LCA?

C2C vision aims to generate cyclical, cradle-to-cradle "metabolisms" that enable materials to maintain their status as resources

Braungart et al. (2007)

Bjørn & Hauschild (2013) J Ind Ecol 17(2) 321-332

- C2C supports continuous material loop ≠ closed material loop
- From C2C analysis aluminum is a "technical nutrient" = a material suited to remain in a closed-loop system maintaining its highest value through many product life cycles

Objective of the LCA study

→ To answer the Hamlet dilemma for aluminium cans in a circular economy:
to be or not to be - in a closed product loop?

Implications for functional unit definition

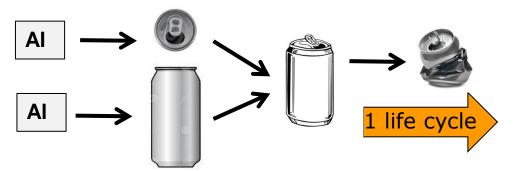
→ "Traditional" functional unit (FU): containment of 1 hl of beer

BUT a circular economy aims to use **materials in continuous loops** therefore this is not the only function...

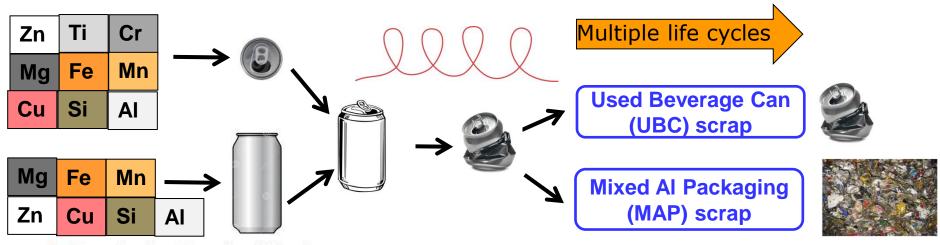
From ILCD Handbook, Annex C, p. 351 \rightarrow an aluminium beverage can:

1st co-function: to carry and protect the beverage it contains

• 2nd co-function: the aluminium scrap (i.e. the end-of-life can) it provides as **secondary resource** for subsequent product systems



→ "Circular economy-inspired FU": containment of 1 hl of beer and supply of resources after its use stage for 30 loops 1 recycling loop = 60 days (EAA, 2015)



Implications for LCI modelling

• Conventional LCA studies of aluminium products → based on a pure Al flow (EAA, 2013) neglecting the presence of alloying elements

 The actual material composition needs to be taken into account while addressing the use of aluminum in continuous loops

Mass Balance of alloying elements Zn Mg Ti Cr DIST **(TION** Si Cu Mn Fe Alloying elements LID COLLECTION → Collection losses **PRODUCTION** CAN Mass_{lid} Primary Al ΑI MANUFACTU-**RING** Primary Al ΑI & PRE-**FILLING** Pre-processing **BODY** Alloying **PROCESSING** losses Mass_{body} **PRODUCTION** elements Mg Zn Si $Mass_{body} (n>0)$ Mn Fe Cu **ALLOY** Remelting REMELTING **ADJUSTMENT** losses Reintegration of **Used Beverage Can Mixed Al Packaging** material losses

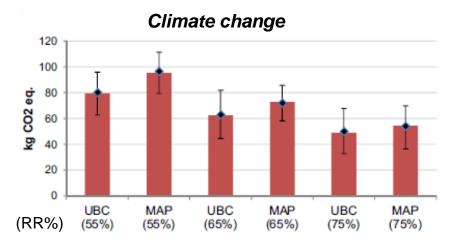
(UBC) scrap

Mn

Quantitative Sustainability Assessment Department of Management Engineering

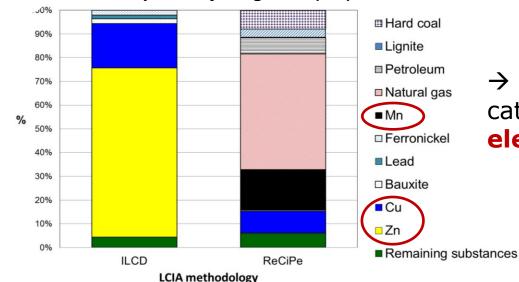
MATERIAL REINTEGRATION

Monia Niero - 63rd LCA Discussion Forum 30.11.2016


(MAP) scrap

Mn

Al


Results: LCA of multiple life cycles

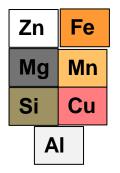
→ Closed product loop option (i.e. UBC scrap) has **lowest impacts** on climate change

UBC scrap - Recycling Rate (RR) = 65%

→ For resource depletion impact category contribution from **alloying elements** is relevant

Quantitative Sustainability Assessment Department of Management Engineering

Source: Niero M, Olsen SI (2016) - Resources Conservation & Recycling 114: 18-31


Conclusions

- → Answer to the Hamlet dilemma of Al can is TO BE in a closed product loop
- How to implement a cost-effective can-to-can recycling system?
- Which are the effects of a closed product-loop strategy on aluminum scrap market?
-

→ Multiple product loops can be modelled by LCA

- Functional unit definition: include both primary (containment) and secondary (supply of resource for next loop) functions
- Life Cycle Inventory modelling based on the actual alloy composition

How can LCA support the CE?

Research activities at DTU Management Engineering, Quantitative Sustainability Assessment (QSA) Division:

✓ Decision support framework for implementing circular economy strategies at product, organization, and supply chain levels

Example: <u>Closed Loop Aluminium Packaging</u> (Climate KIC pathfinder project):

- Objective #1: Combine state-of-the-art insights from the knowledge pools "Technology", "Business models", and "Sustainability assessment"
- Objective #2: Determine potential "paths" towards a closed-loop system for Al cans with focus on CO₂ abatement potential and techno-economic feasibility
- ✓ Risk and sustainability integrated assessment frameworks for optimal use of chemicals and materials in a circular economy

Example: Coupling product use exposure with life cycle impacts:

- Objective #1: Identify hot spots for CE to focus risk minimization in multi-loop systems and to ensure both safe and sustainable CE development
- Objective #2: Consistently combine risk and sustainability indicators to avoid burden shifting in CE material cycles

Do you want to know the details?

- Niero M, Olsen SI (2016) Circular economy: to be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resources Conservation & Recycling 114: 18-31
- Niero M (2016) How to bridge the gap between the packaging sector and circular economy. http://www.carlsbergfondet.dk/en/Research-Activities/Research-Projects/Postdoctoral-Fellowships/Monia-Niero_How-to-Bridge-the-Gap-Between-the-Packaging-Sector-and-Circular-Economy
- Niero M, Negrelli AJ, Hoffmeyer SB, Olsen SI, Birkved M (2016) *Closing the loop for aluminum cans: Life Cycle Assessment of progression in Cradle-to-Cradle certification levels.* Journal of Cleaner Production 126, 352-362.
- Niero M, Hauschild MZ, Hoffmeyer SB, Olsen SI Combining eco-efficiency and ecoeffectiveness for continuous loop beverage packaging systems: learnings from the Carlsberg Circular Community. Accepted for publication in Journal of Industrial Ecology – Nov 2016
- Niero M, Olsen SI, Laurent A. **Renewable Energy and Carbon Management in the Cradle-to-Cradle certification: Limitations and opportunities** Under revision in Journal of Industrial Ecology

Acknowledgements

CARLSBERG FOUNDATION

Thank you for your attention!

Monia Niero, PhD monni@dtu.dk

Division for Quantitative Sustainability
Assessment (QSA)
Department of Management Engineering
Technical University of Denmark
Bygningstorvet Building 115, room 014
2800 Kgs. Lyngby (Denmark)

