STRENTHENING THE TRANSITION TO CIRCULAR ECONOMY BY LCM

Mélanie Guiton¹, Enrico Benetto¹, Alina Beloussova¹, Thomas Schaubroeck¹, Feliks Bezati²

¹Luxembourg Institute of Science and Technology

²Tarkett

LCA Forum, Zurich – DF 63 – 30th November 2016

CONTEXT AND OBJECTIVE

- Industries need some methods and tools to set up strategic targets in support to the transition to a circular economy, and to identify the means to pursue them:
 - Circular economy principles provide technical guidance for keeping products, components and materials at their highest utility and value at all times.
 - LCA evaluates quantitative potential environmental impacts, with the final aim of reducing them while keeping or improving the functionality of products.
- ➤ **Objective of the presentation:** Discussing the potential of LCA for evaluating the consequences induced by the implementation of a circular system, based on an industrial case-study.

CASE STUDY

Linoleum flooring post-use valorisation

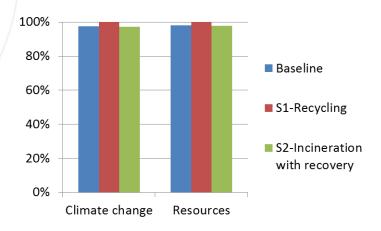
- Linoleum produced by Tarkett more than 2 Mm²/year
- Made of more than 80% renewable raw materials.
- Awarded with the C2C Silver Certificate

- Tarkett aims at improving linoleum post-use valorisation through
 - The implementation of a take-back system
 - > An increase of recovered and recycled post-consumer products
- LCA was performed in order to identify unforeseen hotspots and avoid burden shifting

IMPROVING POST USE VALORISATION

Scenarios definition

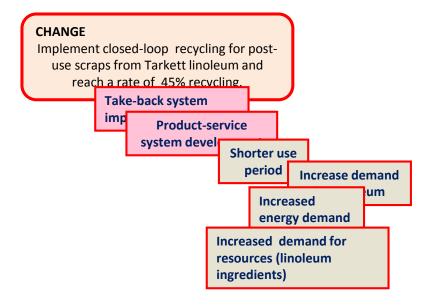
Considering the entire product life cycle


- ➤ 1 baseline scenario reflects the current situation for the treatment of linoleum postuse scraps
- 2 hypothetical alternative scenarios were set by Tarkett

Baseline Scenario	0% recycling post-consumers scraps
Change for Linoleum post-use scraps treatment compared to baseline	
Alternative Scenario 1 - Recycling -	+ 45% closed-loop recycling post-consumers scraps.
Alternative Scenario 2 - Incineration with recovery -	+ 45% post-consumers scraps sent to incineration with energy recovery and recycling of TiO2 and calcium carbonate from ashes.

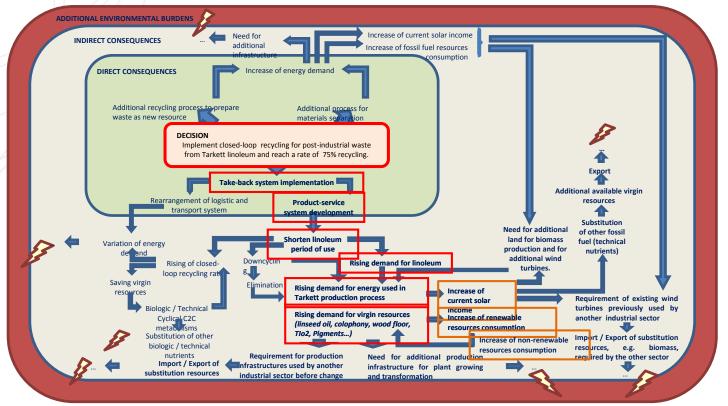
ATTRIBUTIONAL LCA RESULTS

Baseline scenario compared to alternative scenarios


- Very low differences between the three scenarios.
- Contribution analysis on the whole product life cycle is governed by
 - · Fossil fuel consumption,
 - Transportation in the take back system.
- ➤ Based on the results from attributional LCA, the observed differences are not significant enough to choose one option more than the other.

LINOLEUM CIRCULAR SYSTEM

Scenario 1 - Intermediate Milestones and consequences induced by the change



LINOLEUM CIRCULAR SYSTEM

Environmental consequences should be assessed.

LIST.lu

IMPROVING POST USE VALORISATION

Consequences observed in alternative scenarios

Simplified and non exhaustive chain of consequences considered in the case study

Change in Lino scrap treatment

Direct consequence 1

Variable recycled content in recipe

Direct consequence 2

Raw materials substitution

Direct consequence 3

Rising of energy consumption for recycling

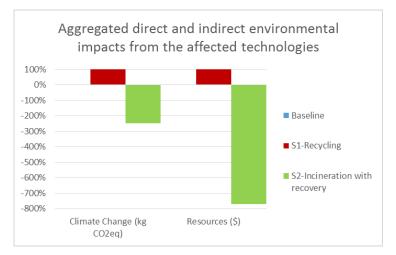
Direct consequence 4

Take back system implementation

Direct consequence 5

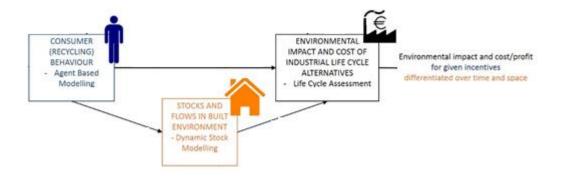
Avoided post-use traditional elimination process

Indirect consequences


Rising demand for electricity production and transportation infrastructure
Saving of electric and thermal energy production

CONSEQUENTIAL LCA RESULTS

For the two alternative scenarios


- Aggregated direct and indirect environmental impacts variations induced by a change in the postuse treatment of the product.
 - Alternative Scenario 1: avoided impacts from the production of raw materials replaced by recycled linoleum
 - Alternative Scenario 2: avoided impacts from the recovery of titanium dioxide and calcium carbonate on one side, and avoided electricity and heat production due to energy recovery from linoleum incineration.
- > The consequential perspective allows differentiating the alternative scenarios.

PROPOSAL FOR FULL SCALE ASSESSMENT LUXEMBOURG INSTITUTE

- Consumer behaviour modelled through Agent-based modelling
- Quantification of products in use and of waste generated over time for a defined period, in a specific region, made with Material Flow Analysis
- Combination with LCA

CONCLUSIONS

- Consequential LCA is of particular interest
 - When the transition towards a circular model induces significant technical variations beyond the direct system boundaries affected by the change.
 - In order to demonstrate the presence of potential additional impacts, based on the modelling of the change and its consequences.
 - In support to decision making for strategic purposes

THANK YOU!

Mélanie Guiton R&T Associate – LIST melanie.guiton@list.lu

