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About me

o Third year PhD Student
Prof. Sangwon Suh and Prof. Arturo Keller

o Life-Cycle Assessment for Chemicals; Life-Cycle
Inventory Database; Machine Learning; Chemical
Toxicity Prediction.

00 - Chemical Life-Cycle Collaborative (CLIiCC) with US EPA.

http: / /www.runshengsong.me/
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Background — Predictive LCIA
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11 Alternative path to estimate LCA indicators.
e.g., CED, GWP and Eco-indicator; IE

Estimates the indicators with molecular

. . . . . No data received
structure information using machine learning
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Background — Predictive LCIA

Chemical structure is correlated with chemical
properties and impacts;

Linear regression model has been widely used to
approximate chemical impact;

The predictive power is restricted.

Nonlinear model shows better predictive power

Artificial Neural Networks (ANNs) outcompetes linear
regression model in estimating life-cycle indicators for
chemicals.
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Background — Deep ANNs

1 ANNs model becomes very popular because of the concept “deep learning”
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Highlights of This Study

11 Estimate the life-cycle impact indicators
for chemical

@ 6

o Use deep Neural Networks model; Chemical Design Neural Networks Model

o1 Use high dimensional molecular structure descriptors; <
o Model structures were tuned; >
R

o Model Applicable Domains (AD) were measured;

2 What we learnt from this study. Life-Cycle Impacts

Chemical Production



Method — Data

166 chemical LCl data were collected from Ecoinvent v3.01

10 chemicals were used as testing set
10% of the rest 156 chemicals were

validation set

About 4,000 molecular descriptors were
generated by software Dragon 7.

Cumulative Explained
Variance Ratio

Principle component analysis was used
to reduce the dimension of the
descriptors.
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Results — Acidification Model
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Model Performance (R2)
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Results — Model Training

Training Process of Acidification Model
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Model Applicable Domain

Query chemicals that have higher structural similarity with the training
data are likely to have higher prediction accuracy.

Accuracy could be measured depending on if this chemical falls into
the applicable domain.
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Model Demo on Test Data
OH

Only Test Set

2,4-Dichlorophenol ~
TRACI, Acidification: 1.32 (moles of H+-Eq);
Our model estimates: 1.27 (moles of H+-Eq);

® estimated values
7 - —— perfect prediction line
MRE: 51.14

h
i

Uncertainty according to AD: Low

Ln
i

L
i

Hexafluoroethane
TRACI, Acidification: 6.8 (moles of H+-Eq);
Our model estimates: 4.6 (moles of H+-Eq);
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Conclusion

We are able to predict three mid-point indicators (CED, Acidification, GWP) and
three end-points indicators (EI?99, Human health, Ecosystem quality);

The cross-validated models show good predictive power on testing data (R2 > 0.7);

Model applicable domain measurement can indicates the uncertainty of the
prediction;

The end-point indicators require higher complexity of the model.



Outlooks

N
1 More training data will always be beneficial;

0 It’s hard to tell the contribution of each input '
deep neural netwo!

descriptors;

1 This field is developing very fast.

‘¢ Tensor
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Cross-Validation for Acidification Model
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