

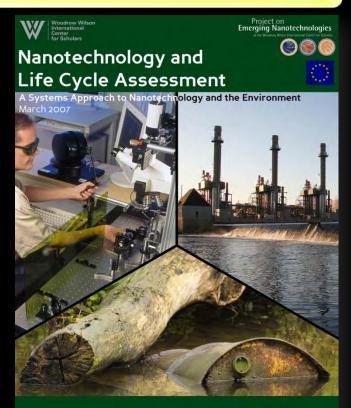
65th LCA Discussion Forum

How suitable is LCA for Nanotechnology assessment?

Overview of current methodological pitfalls and potential solutions

Wednesday May 24, 2017; 08:30 h – 17:15 h Alumni Pavilion, ETH Zürich

DF LCA Sponsors 2017



LCA – a suitable tool for engineered Nanomaterials

- the cradle-to-grave assessment of health and environmental impacts of nanotechnology is vital for a successful, safe commercialisation
- Existing standards for LCA are fully suitable for use on nanomaterials and nanoproducts
- Gives a more holistic view; allows for a comparison with conventional products

[US-EPA & EU conference, October 2006]

65th DF LCA «LCA & Nanotechnology» / May 24, 2017 / Zürich (CH)

Synthesis of Results obtained at a workshop in Washington, D.C., 2-3 October 2006

Welcome

- The Advancing Life Cycle Assessment Group at Empa further develops the LCA method in order to better support early phases of the technology development and to address environmental and societal implications of novel material and of emerging technology applications, by
 - extending the perspective of life cycle assessment to societal aspects;
 - supporting asustainable technology development combining the LCA framework with new, innovative approaches such as SbD (safe-by-design) or RRI (responsible research & innovation);
 - and further improving LCIA methods and LCI data availability.

Introduction

- In the LCA ISO 14'040 framework is fully suitable for the assessment of nanomaterials and nanoproducts, despite notable shortcomings in availability of inventory data and missing evaluation instruments for impact assessment.
- Various actors have worked since then extensively on these aspects with goal of ensuring that traditional & nano-specific environmental issues can be assessed within a unified, comprehensive & consistent framework.

... but how far is this really the case ... ? This day will give you some elements of an answer ...

Welcome & Introduction

Part I – Perspectives on environmental assessment of nanotechnology

State-of-the Art and Challenges when applying LCA / Regulatory Perspective / Industrial Perspective

Part II – Prospective modelling (for nanotechnology)

Prospective modelling concepts / Uncertainties in such models

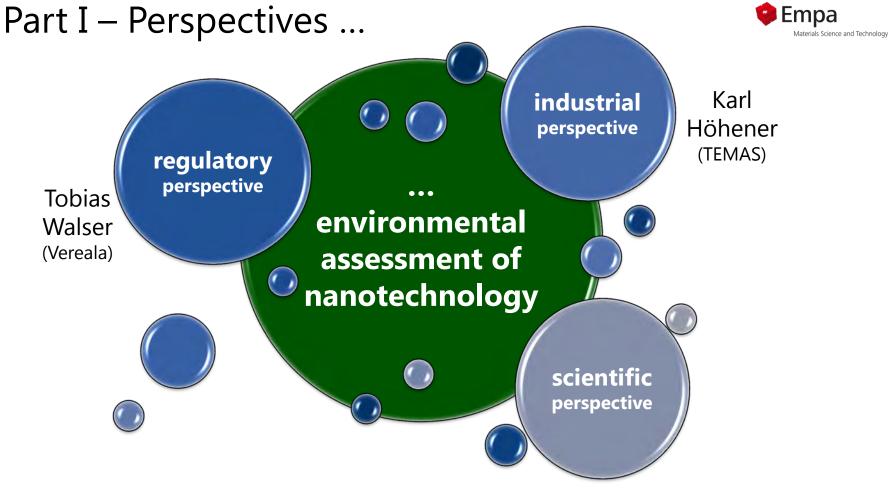
Part III – Impact assessment methods for nanotechnology

toxic effects of nanoparticles (limits, gaps) / Quantification of releases along the life cycle / Integration of fate and toxicity of nanoparticles into LCIA framework

Part IV – Combining LCA and risk assessment for nanotechnology

Merging / confronting various concepts, approaches

Closing Remarks


65th DF LCA «LCA & Nanotechnology» / May 24, 2017 / Zürich (CH)

Part II.b – short presentations

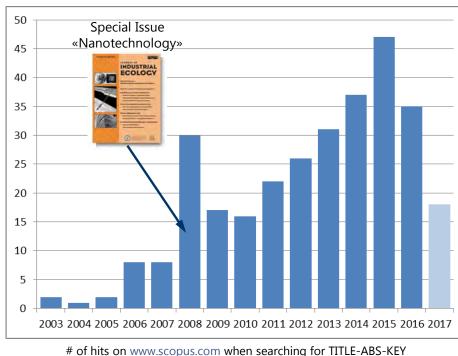
Program overview

Time	Title	Speaker [Moderator]
8:30	Registration, coffee & croissants	
	Perspectives on environmental assessment of nanotechnology	[Arthur Haarman, Empa]
9:00	Welcome and introduction: State-of-art and challenges when	Roland Hischier, Empa,
	applying LCA to nanotechnology	St. Gallen (CH)
9:25	Regulation of Nanomaterials – the relevance of LCA and RA	Tobias Walser, Vereala,
		Zürich (CH)
9:50	Industrial perspective on nanotechnology development	Karl Höhener, TEMAS,
		Zürich (CH)
10:15	Discussion	
10:30	Coffee break	
	Prospective modelling for nanotechnology	[Didier Beloin-Saint-Pierre,
		Empa]
11:00	Exploring prospective application of LCA to enhance	Marco Villares, Delft (NL)
	technological development	
11:25	Prospective modelling and effect from uncertainties	MINES ParisTech, Nice (F)
11:50	Discussion	
	Short presentations	
12:15	A comparison of two methods for probabilistic modelling of	Véronique Adam, Empa,
	ENM emissions along their life cycle	St. Gallen (CH)
12:25	Decision-making concept on medical nanoparticles	Peter Weyell, University of
		Jena (D)
12:35	A network perspective reveals decreasing material diversity in	Nicole Sani-Kast, ETH,
	studies on nanoparticle interactions with dissolved organic	Zürich (CH)
	matter	

Materials Science and Technology

State-of-art and challenges when applying LCA to nanotechnology

Roland Hischier Advancing Life Cycle Assessment (ALCA) Group Empa, St. Gallen, Switzerland


Publications in the field «LCA & Nano» ?

LCA and Nanotechnology ... a hype that seems already beyond its «zenith» ...

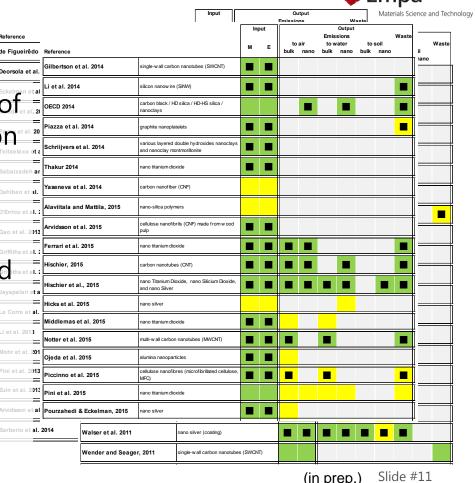
or

... what are possible reasons that the # of publications is still not really «taking off» ... ?

of hits on www.scopus.com when searching for TITLE-ABS-KEY
 (nanomaterial OR nanomaterials OR nanoparticle OR
 nanotechnology OR nanotechnologies) AND TITLE-ABS-KEY
 ("life cycle assessment" OR "life cycle analysis")

Review study «LCA & Nano» (2012)

			study [and Sanden		udy [11]		ıdy [12]			iy [13]			y [14]		study	[10]		study	
	Reference	Jo	shi 2008	2008	and Sanden	Singh et a	1.2008	Khanna et	al. 2008	вь і	Khanna and	Baksh	i 2009	Fthenakis et	al. 2009		Grubb 2010		Roes	et al. 20	10
	Type of Study	LC	A, cradle-to-	Energy	knalysis, crad		onmental sessment), vi: od, cradle-to-	a Energy An cradle-to-ç			Energy Anal cradle-to-ga		LCA,	LCA (?), crac	lle-to-ga		Energy Analys Analysis & LC. gate			radle-to	-grav
		stud	y [1]	study [2]		study [3]		study [4]			study [5]			study [6]			study [7]		stu	dy (8	
Reference	Covered Nanoma	Greijer et al.	2001By (OMM	Lloyd and Lave 20	03 Stei	infeldt et al. 200	4a _{arbo} Lloyd	et al. 2005	oofiber (Osterwa	alder et al. 2	006 p	Roes e	t al. 2007	ne-Si a	Bauer	et al. 2008	ie H	lealy et al.	2008	-
Type of Stu	idy	LCA, cradle-1	ontmorillonite o-grave	Hybrid LCA (i.e. Pr LCA and I/O-LCA)	ocess LCA	A, cradle-to-grav	LCA a	d LCA (i.e. Pr and I/O-LCA)	ocess	cradle-to	standard ste	ilysis, t of a ael olat	LCA, o	nano-Ag con system s adle-to-grav	e I		nanoparticles radle-to-grave	• L	CNTs CA, cradle	-to-gate	
	functional unit	nanocrystalli	te dve (from	I Kg UN	(3) M	dy [18]	THE THE LET	y [19]		study	rticles of tits	nium.	study	Emz or evo		20181)	ly [22]		study [23		
Covered Na	anomaterials	nanocrystalli	neitanium	•polymer nanocom	cart	d Seager, 2011	(iv) aroup	metal (PGM	Deors	ola et al.	2012	Eckel	man et	al. 2012 mp	Le Co	rre et a	al. 2012	Manda	et al. 201	2on	
		dioxide & car					partic					car					-to-gate for cradle-to-				1
		fro	type of s	calculation for 16.	LCA, cradle	e-to-gate urface treatem	LCA, cradle-	to-gate	LCA, o	cradle-to-	-gate	LCA, o	cradle-t	o-gate unt of packa 1'000 bags		(?) for	packaging	LCA, o	radle-to-gi	ate	
functional u	mit tem boundari	1 kWh electri from the sola system	covered	cars produced an 210 Mio cars on tr nanomaterials 15 out of a car	single-wall nanotubes		(iii) 1 _{Total} two different cellulose na			denum s) nanopa		single	-wall c ubes (S	andies / (ii) arbon to cove sWCNT) hou 3 / (iii) body p		plus	crystals org. mod. MMT)		g SWCNT tanium die	oxide	
system bo	materials, based	from resource to the final dis photovoltaic of complete life Excluded are construction	spc function cyc on	from resource extr al unite use of polyn nanocomposites i automobiles - cov all linked econom	capacity of	nergy storage a Li-lon battery ncineration) - vi iomaterial prod	to the		1 g of		noparticles ow up treatmore and the second	1 kg o inng rent ad	f SWCI	source extra mal disposa ation - via ay and polyn proposite	(SNC 10'000 materi	resp. () m2 c al	material more OMMT) / extract of packaging ing of the telev in via CNT and	(printin (resp.	e of produ g/writing) 1 kg of nar la synthes ntil final p	paper no TiO ₂)	
materials, I	n with traditional based on COS for materials & energible (background data es for covered	work. as	Brissystem I	functional unit (i.e. boundaries roduced annually,) jour VO: national statis	until the fina incorporate battery	ction of the ut materials of al SWCNT, ed into a Li-Ion mations, based	from product various input until the extra purification (the cellulose nanowhiske	t materials action and dialysis) of	variou until th mixing drying molyb	productio is input in the produ g, spin-di g) of the idenum s particles	naterials ction (via rying,	(incl. f via sys until fi	catalyst Materia nthesis nal pac	preparation production) , purification kaging	materi proces purific modifi resper plus p	als, vi as unt ation (cation ctive n roduc	(incleevievisio	materia proces materia conver until th	roduction als, via pro ses (for n al and tional ma e producti g / wirting	eduction Iano Ierial Iterials) Ion of	
nanomater	ials Impact assessme covered aspects	literature No Int, Iev	com paris	son with traditional s, based on	Durces / cor	a for classic ma mponents of TR ^{S)}	data f	rom commer oftware US EIO-LCA	dialoinn (SWP.) Tomet nodel	literature (P)	e and Cumula Demand (in reported	tive En Ell) an		mpasite &	filler o packa	n basi ging: '	with other is 1 kg / for 10'000 m2 of naterial		anwani 20 al unit - i.e ing/wirting		
	k energy carriers nd data) essment,	No informatio	data sou nanomat	1992 US EIO-LCA (Carnegie Mellon) rces for covered terials Global Warming a Toxic Paleases	& Gi Data for SV from study	ous literature s aBi database VCNT taken [8]s "midpoint" cators (GWP, A D-Values, varior	data taken from measureme (extraction of fiber & cellulo nanowhiske literature sour materials)	ntselault & n f coconut n) ose	meas (molyt	es (furthe	s sulfide d literature	expan ecoto:	aken fr ded wi xicity	om study (8) h CNT ion factors	OMMT study Comm data ta	: data 9] (via nunica aken fr	taken from	Data ta [15] res (2nd p	imaPro da ken from sp. from lif roduction imome in limate cha	study terature way)	ow
further put of study	Dication	-	materials	rces for further s & energy carriers ound data) is part of Lloyd 20	no informat		ecoinvent Da	tory items atabase t of Lloyd 200	ecoinv	emissio vent Data			CED-V Pro dat				/alues latabase	literatu	cidification ent Databa irealy et al. t al. 2006,	nse resp 2006, la (Isaacs). no
			impact a covered	ssessment, aspects	level of curr inventory da	parison on the nulative ata: material yinput, waste	various "mid indicators (G from the ReC	WP, HT,)		l warmin lative ene nd			xicity (a SEtox m	cording to odel)	energ acidifi partly	y requi cation also fu	ing, gross irement & are reported; urther LCIA ci method)	cumula	warming a ative energ id; ReCiPe (endpoint)	e single	
			further p of study	oublication	-		-					-									


<40 LCA studies of engineered nanomaterials published so far;
Less than 30% of the studies are taking into account the complete life cycle (cradle-tograve), while most studies omit end-of-life treatment or use phase, respectively;

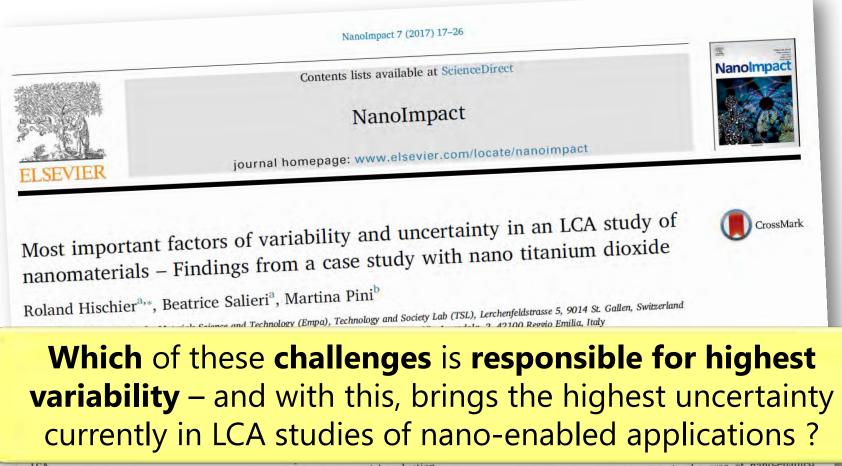
~40% of studies are based ona functional unit of 1 weightunit of produced nanomaterial.

... updated (2017)

- most studies still **omit** majority of difficult issues (like e.g. inclusion and subsequent assessment of releases of nanoparticles).
- **Up to summer 2016**, still only few studies have been published that are covering releases of nanoparticles in their studies,
 - ... dealing with nano silver, CNT, various forms of silica, nanocellulose and nano titanium dioxide (2 studies).

_								_		i	
]			
]			
]			
]			
]		İ	
										İ	
SWCNT)											
(in prep.) Slide #11											

Conclusion – sounds somehow familiar ...



Relevant to **take into account all nano-related functionalities** and to **cover them adequately** by choosing an **appropriate functional unit** as well as respective system boundaries.

Establishing **Generic Life Cycle Inventory Models** of most common production ways of most important **nanomaterials**

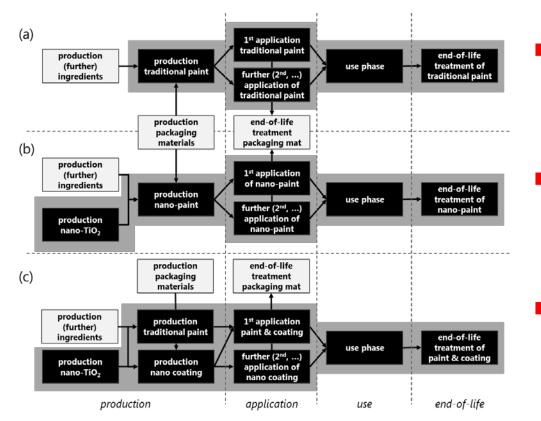
Establishing clear **rules how releases of ENM need to be taken into account** on level of LCI modelling (what elements, what properties need to be reported for emission of ENM_x ?)

(in a close collaboration of Toxicologists & Life Cycle Assessment Specialists) systematically establishing missing **LCIA factors for releases of nanomaterials**.

Impact assessment

the toxicity potential evaluation. Hence, in order to apply Life Cycle Assessment in a more efficient way in the area of nano-enanced applications it would make sense to identify those challenges that result in the largest variation of the results;

Case study



Outdoor facade paintings and coatings with and without nano titanium dioxide

	nano paint	traditional paint	nano coating
Lifetime [years]	27	20	15
Composition [% w/w]			
– nano-TiO ₂	3.0	-	30.0
– TiO ₂ , pigment-grade	13.58	16.58	-
 Silicone defoamer 	10.97	10.97	0.2
 Styrene/acrylic copolymer 	14.62	14.62	15.0
 Calcium carbonate (filler) 	31.75	31.75	-
– Talcum (filler)	6.58	6.58	-
 Further ingredients 	5.2	5.2	36.5
– Water	11.3	14.3	18.3
4			100

Goal & Scope

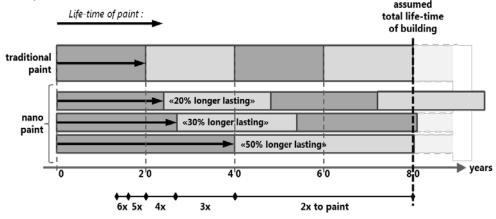
Functional unit 1 m² of wall, protected over time of 80 years

Background data ecoinvent version 3.1

(recycled-content model)

Applied LCIA methods
 ReCiPe Midpoints and
 USEtox

Challenges within this study



- [Study setup] Influence of chosen characteristics (e.g. life times) of here examined ENM-containing paint? Use of other alternatives (containing ENM) – what would change?
- [LCI data] Influence of using various data (and methods) covering the production of the required nanomaterial (nano-TiO₂)
- [Releases of nanoparticles] Are there any releases of nanoparticles taking place along the life cycle? What amount? How to assess such releases (i.e. what characterisation factors are available for this kind of releases?)

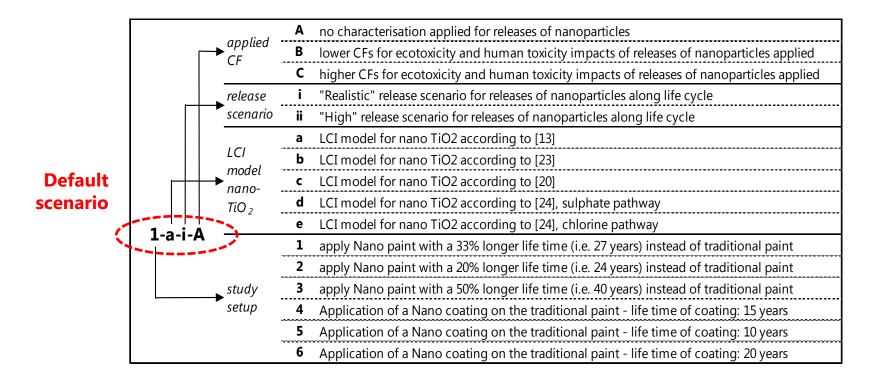
Scenarios «Study setup»

(i) the influence of a change of the actual life-time of the nano-TiO₂ containing paint, and

number of times that building has to be painted (in function of life-time of paint) !

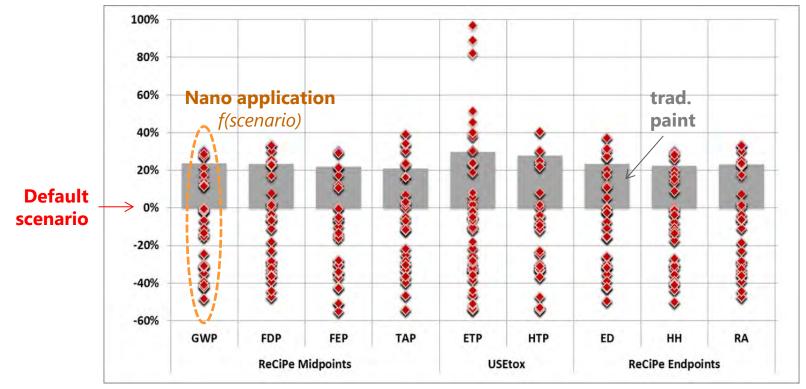
(ii) a change in the formulation (i.e. applying a nano-coating on top of the paint, instead of an actual paint formulation with ENM).

Scenarios «Releases of nanoparticles»

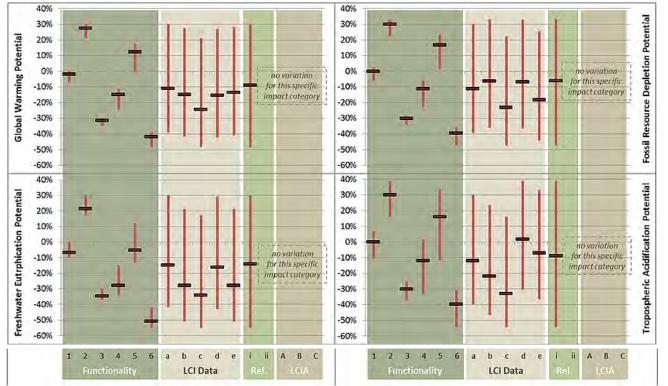

(i) Release of Nanoparticles along the life cycle

(ii) Characterisation Factors (CF) for toxicity assessment :

LCIA factor	Value	Unit	Further Information	Source	
All factors	0		No CF applied for all toxicological impacts		А
	2.80E-01	PAF m³ day/kg	Lowest value based on weighted size distribution of nano-TiO ₂ in freshwater	Salieri et al.,	В
Freshwater	Highest values " – with α =0.001; nano-		Highest values " – with α =0.001; nano-TiO2 diameter=8 nm	2015a	-
ecotoxicity	1.30E+02	PAF m ³ day/kg	USEtox & SimpleBox4Nano combined	Salieri et al.,2015b	С
	2.62E+01	PAF m ³ day/kg	simplified FF / EF from HC_{50} values	Miseljic et Olsen, 2014	-
Human	5.98E-06	cases/kg	outdoor, CONTINENTAL		В
Toxicity, carcinogenic	1.43E-02	cases/kg	outdoor, SWITZERLAND	Pini et al.,	С
Human	2.45E-10	cases/kg outdoor, CONTINENTAL (lower value)		2016	В
toxicity, non- carcinogenic	5.85E-07	cases/kg	outdoor, SWITZERLAND (higher value)		С

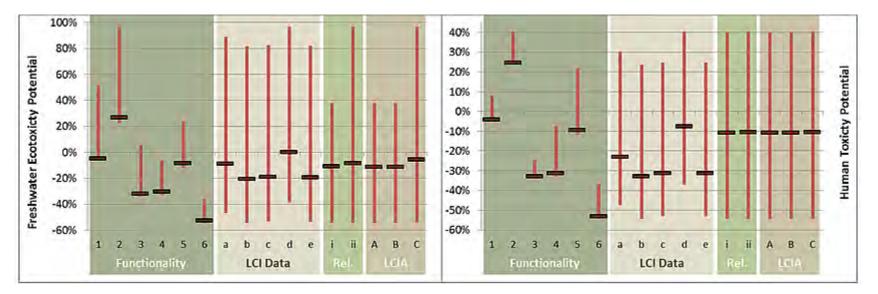

... in total about 180 different runs ...

Results



Relative results – in comparison to the default scenario (set as 0%)

Results



Variability of the results for each of the four issues when the parameter of one scenario (shown as name on the horizontal axis) is kept constant, while all further parameters are varied.

Results

Variability of the results for each of the four issues when the parameter of one scenario (shown as name on the horizontal axis) is kept constant, while all further parameters are varied.

Conclusion

- main factor for the variability in the results lies at the very beginning of the LCA study – i.e. the adequate setup of the system is a crucial prerequisite for a fair and objective result !
- Precondition is that respective inventory data and/or LCIA factors are available and are taken into account in the study – however, accuracy of these issues (i.e. inventory data and LCIA factors) is of much lower relevance than the adequate study setup
- Not quantifiable is uncertainty related to unknown issues and/or those not included (e.g. in the case examined here the relevance of releases of nano-TiO₂ into air, as no respective LCIA CF is available) ... one possibility to handle this point could be analogy considerations !

Outlook / recommendations

- First identify thoroughly all functionalities of a nano-enabled application and align them with traditional counterpart in a way that all aspects get covered in an equal way, allowing a fair (& comprehensive) comparison ;
- then follow the general recommendations for LCI data of MNMs and LCIA factors of releases of nanoparticles, in order to ensure the use of the most complete and comprehensive data possible.
- As long as some issues are covered by assumptions, it is important that a reasonable amount of sensitivity (or scenario) analysis are established in order to evaluate the relevance of all applied assumptions, and
- all this needs to be documented as transparently as possible ...

Roland.Hischier@empa.ch

Advancing Life Cycle Assessment Group Technology & Society Lab Empa St. Gallen www.empa.ch/alca