

A case study on bioleaching e-waste for metal recovery

65th LCA Discussion Forum. ETH, Zurich May 24th 2017

Marco Villares

Novel process for metal recovery from printed circuit boards (PCB)

0

•Scaled-up system

Recommendations

 Discussion Conclusions

collaboration lab scale research UNESCO - IHE, Delft

Novel process for metal recovery from printed circuit boards (PCB)

Novel process for metal recovery from printed circuit boards (PCB)

3 stage organisation of research

3 stage organisation of research

3 stage organisation of research

Execution of research

Laboratory bioleaching process

Printed Circuit Boards - PCB

Manual disassembly

Machine crusher

Crushed PCB (sterilized)

Laboratory bioleaching process

Open air shake flasks

leachate solution

Yield: 96% Cu solubilised

solid residue (approx: 60% wt of PCB) non metallic fraction & precious metals

Non-cumulative fractional contributions of main unit processes

Scale up option - Open air heap bioleaching

0

•Discussion Conclusions

Recommendations

Talvivaara nickel mine Sotkamo, Finland

Scale up option - Open air heap bioleaching

Introduction

Research plan

-Lab system

•Discussion

Conclusions

•Scaled up system

•Recommendations

0

Scale up option - continuous stirred tanks

BioMinE Pilot plant Seville, Spain

Scale up option - continuous stirred tanks

Discussion
Conclusions

Recommendations

tank impeller air sparging cooling baffles

high intensity aeration, agitation & heat exchange

Scale up option - continuous stirred tanks

Introduction

•Discussion

Conclusions

•Recommendations

0

pure cathode copper

Comparison with established technology

integrated smelter refinery

Scaled Up System - scenario

0

•Scaled up system

•Recommendations

0

•Discussion

Conclusions

Scenario

 \mathbf{O}

200

0

0

Discussion

Conclusions

00 Recommendations

Scenario

Discussion

Conclusions

Recommendations

25

Flowchart

Non cumulative contributions of main unit processes

Contributions to Bioleaching unit process

Contributions to SX -EW unit process

Contribution analysis

Optimisation of pulp density (processed PCB)	PD 1%	PD 10%	PD 20%	
Category	Value	Value	Value	Unit
CML 2001, eutrophication potential, generic[GLO]	1.13	0.121	0.0633	kg PO4-Eq
CML 2001, resources, depletion of abiotic resources[GLO]	5.63	0.601	0.313	kg antimony-Eq
CML 2001, acidification potential, generic[GLO]	2.69	0.302	0.164	kg SO2-Eq
CML 2001, photochemical oxidation (summer smog), high NOx POCP[RER]	0.155	0.0169	0.00894	kg ethylene-Eq
CML 2001, climate change, GWP 100a[GLO]	345	39.8	22.3	kg CO2-Eq
CML 2001, terrestrial ecotoxicity, TAETP 20a[GLO]	0.0358	0.00379	0.00196	kg 1,4-DCB-Eq
CML 2001, marine aquatic ecotoxicity, MAETP 20a[GLO]	164	17.8	9.35	kg 1,4-DCB-Eq
CML 2001, freshwater aquatic ecotoxicity, FAETP 20a[GLO]	257	27	13.8	kg 1,4-DCB-Eq
CML 2001, stratospheric ozone depletion, ODP steady state[GLO]	7.10E-05	7.53E-06	3.89E-06	kg CFC-11-Eq
CML 2001, human toxicity, HTP infinite[GLO]	1,030	107	54.3	kg 1,4-DCB-Eq

Optimisation

Optimisation of pulp density (processed PCB)	PD 1%	PD 10%	PD 20%	
Category	Value	Value	Value	Unit
CML 2001, eutrophication potential, generic[GLO]	1.13	0.121	0.0633	kg PO4-Eq
CML 2001, resources, depletion of abiotic resources[GLO]	5.63	0.601	0.313	kg antimony-Eq
CML 2001, acidification potential, generic[GLO]	2.69	0.302	0.164	kg SO2-Eq
CML 2001, photochemical oxidation (summer smog), high NOx POCP[RER]	0.155	0.0169	0.00894	kg ethylene-Eq
CML 2001, climate change, GWP 100a[GLO]	345	39.8	22.3	kg CO2-Eq
CML 2001, terrestrial ecotoxicity, TAETP 20a[GLO]	0.0358	0.00379	0.00196	kg 1,4-DCB-Eq
CML 2001, marine aquatic ecotoxicity, MAETP 20a[GLO]	164	17.8	9.35	kg 1,4-DCB-Eq
CML 2001, freshwater aquatic ecotoxicity, FAETP 20a[GLO]	257	27	13.8	kg 1,4-DCB-Eq
CML 2001, stratospheric ozone depletion, ODP steady state[GLO]	7.10E-05	7.53E-06	3.89E-06	kg CFC-11-Eq
CML 2001, human toxicity, HTP infinite[GLO]	1,030	107	54.3	kg 1,4-DCB-Eq

÷10

Optimisation

Scaled Up System - comparison

Flowchart Pyrometallurgical system

Scaled Up System - comparison

Multiple of difference between impacts of bioleaching and pyrometallurgical product systems

Impact category, characterisation factor (Guinée et al., 2002)	Pyrometallurgical system: Integrated smelter-refinery	Scaled up bioleaching system: Pulp density 1%	Scaled up optimised bioleaching system: Pulp density 10%	Scaled up optimised bioleaching system: Pulp density 20%	Unit
eutrophication, generic[GLO]	6.4 ×10 ⁻⁵	17,629	1,888	988	kg PO₄-Eq
depletion of abiotic resources[GLO]	3.3 ×10 ⁻⁴	16,907	1,805	940	kg antimony-Eq
acidification, generic[GLO]	2.2 ×10 ⁻⁴	12,227	1,373	745	kg SO ₂ -Eq
photochemical oxidation, high NOx POCP[RER]	2.1 ×10 ⁻⁵	7,452	813	430	kg ethylene-Eq
climate change, GWP 100a[GLO]	1.0 ×10 ⁻¹	3,317	383	214	kg CO₂-Eq
terrestrial ecotoxicity, TAETP 20a[GLO]	1.7 ×10 ⁻⁶	21,437	2,269	1,174	kg 1,4-DCB-Eq
freshwater aquatic ecotoxicity, FAETP 20a[GLO]	4.1 ×10 ⁻¹	630	66	34	kg 1,4-DCB-Eq
stratospheric ozone depletion, ODP steady state[GLO]	7.3 ×10 ^{.9}	9,686	1,027	531	kg CFC-11-Eq
human toxicity, HTP infinite[GLO]	7.3 ×10 ⁻²	14,168	1,472	747	kg 1,4-DCB-Eq

x 10,000 - x10

Order of magnitude between potential impacts

Comparability?

Pyrometallurgical product system

Bioleaching product system

Re-examining the system boundary

- LCA displays potential hot-spots, despite uncertainties.
- Novel technology has inferior profile developmental challenge for novel technology gains definition early on.

Introduction

•Research plan

•Lab system

•Scaled up system

•Discussion

Recommendations

- LCA displays potential hot-spots, despite uncertainties.
- Novel technology has inferior profile developmental challenge for novel technology gains definition early on.
- LCA approach broadens research scope systems approach, long term view, environmental aspects, view of technology
- Applying lessons from existing context is an effective scenario definition strategy.

- Introduction
- Research plan
- •Lab system
- Scaled up system
- •Discussion

- LCA displays potential hot-spots, despite uncertainties.
- Novel technology has inferior profile developmental challenge for novel technology gains definition early on.
- LCA approach broadens research scope systems approach, long term view, environmental aspects
- Applying lessons from existing context is an effective scenario definition strategy.

- IntroductionResearch plan
- •Lab system
- •Scaled up system
- •Discussion

- Prospective LCA + exploratory scenario is of great service as a developmental design tool.
- Effectiveness of multidisciplinary research collaboration between institutes.

Recommendations

- Further refine LCA in subsequent development stages of the process.
- Disseminate this technique as a systems approach tool.

Introduction

•Research plan

•Lab system

•Scaled up system

•Discussion

•Conclusions

Recommendations

- Further refine LCA in subsequent development stages of the process.
- Disseminate this technique as a systems approach training tool.
- Validate approach through testing on other novel technology cases.
- Strengthen estimative/simulation component.

Introduction

•Research plan

•Lab system

•Scaled up system

•Discussion

Conclusions

Recommendations

- Further refine LCA in subsequent development stages of the process.
- Disseminate as a systems approach training tool.
- Validate approach through testing on other cases.
- Strengthen estimative/simulation component.
- Try more precocious application on research proposals & design concepts in industry.
- Expand approach with social & economic aspects.
- IntroductionMethod
- INCTIOU
- Results
- •Discussion
- •Conclusions

More information

• Complete MSc thesis:

"Applying a life cycle perspective to research on metal recovery from electronic waste using bioleaching" <u>http://repository.tudelft.nl/view/ir/uuid:ad116c32-ea7c-</u> <u>40eb-955a-ba96d62ac5c8/</u>

- Article in Journal of Cleaner Production:
- "Applying an ex-ante life cycle perspective to metal recovery from e-waste using bioleaching"

http://dx.doi.org/10.1016/j.jclepro.2016.04.066

- Article in Journal of Life Cycle Assessment:
- "Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste"

	ARTICLE IN PRESS	
	Journal of Cleaner Production xxx (2016) 1-14	
100000	Contents lists available at ScienceDirect	Cleaner
	Journal of Cleaner Production	ASP .
ELSEVIER	journal homepage: www.elsevier.com/locate/jclepro	and the second second

Applying an ex-ante life cycle perspective to metal recovery from e-waste using bioleaching

Marco Villares ^{a, b, *}, Arda Işıldar ^c, Angelica Mendoza Beltran ^a, Jeroen Guinee ^a 'minur ef Environmenia Science (OM, Liefer University, Uni Steeningsbuss: Einstrinseg 2, 2003 CL Indee, Die Nerbelands Taxity ef Appled Science, DeB University ef Robinsky, University 1, 2008 O Felf, The Netherlands UNIVO-041 Institute (Nature 1, 2013 XOL), Die Netherlands

ICLE	INFO	A 1	BS	т	R	٨	c

