

65th LCA Discussion Forum Zurich - May 24, 2017

Prospective LCA modelling How to deal with uncertainties ?

Part I : A new approach based on GSA Part II : The Graphene Case study

Martino Lacirignola (ADEME, FR) Paula Pérez-López, Philippe Blanc, **Isabelle Blanc** (Centre O.I.E. - MINES ParisTech, FR) Robin Girard (Centre PERSEE - MINES ParisTech, FR) **Didier Beloin-Saint-Pierre** (EMPA, CH)

65th LCA Discussion Forum Zurich - May 24, 2017

Part I

Global sensitivity analysis in LCA of emerging technologies:

Accounting for inputs' variability

Martino Lacirignola (ADEME, FR)

Paula Pérez-López, Philippe Blanc, Isabelle Blanc (Centre O.I.E. - MINES ParisTech, FR) Robin Girard (Centre PERSEE - MINES ParisTech, FR)

LCA of emerging technologies: addressing high uncertainty on inputs' variability when performing global sensitivity analysis; Science of the Total Environment, 578 (2017) 268-280

LCA for emerging technologies

Emerging technologies

- Wide data gap
- No pilot/large-scale data?
- Incomplete technology development
- Unknown future applications
- Data quality concerns

How to deal with uncertainty in LCA of emerging technologies?

*Case study: Enhanced Geothermal Systems (EGS) ARMINES

EGS: an emerging technology to exploit geothermal resources where water, heat or rock permeability are not sufficient for a conventional geothermal system

- Deep wells: 2.5 − 5 km ⇒ Drilling
- Reservoir stimulation (enhancement) → Fracturing the rock (e.g. by water pumping)
- For binary systems Organic
 Rankine cycle
- Ground-water use

Image: geothermalworldwide, 2016

General modelling framework for LCA

EGS: LCA model (GHG emissions)

Symbol	Parameters	Baseline scenario
Z	Borehole depth	4000 m
Nw	Number of wells	3 wells
d	Fuel for drilling	5000 MJ/m
LT	Lifetime	30 y
f	Produced flow rate	62.5 kg/s
P _{ORC}	Installed capacity ORC	2375 kW
SFe	Enhancement scaling factor	5.25
LF	Load factor	0.90
P _p	Specific power of pumps	6.1 kW/(kg/s)

EGS: LCA model (GHG emissions)

$$\frac{\Psi}{GHG_{EGS,A}} \left[\frac{g \ CO_2 eq}{kWh} \right] = \frac{z_A \cdot Nw_A \cdot (\boldsymbol{\alpha_1} + \boldsymbol{\alpha_2} \cdot d_A) + LT_A \cdot f_A \cdot \boldsymbol{\alpha_3} + P_{ORC,A} \cdot LT_A \cdot \boldsymbol{\alpha_4} + Nw_A \cdot Sfe_A \cdot \boldsymbol{\alpha_5}}{LF_A \cdot LT_A \cdot \left(P_{ORC,A} - f_A \cdot P_{p,A}\right) \cdot 8760}$$

With $\alpha_1 = 498761.36 \text{ gCO}_2 eq/m$; $\alpha_2 = 90.56 \text{ gCO}_2 eq/MJ$; $\alpha_3 = 487363.03 \text{ gCO}_2 eq \cdot s/(kg \cdot y)$; $\alpha_4 = 50603.13 \text{ gCO}_2 eq/(kW \cdot y)$; $\alpha_5 = 25757089.05 \text{ gCO}_2 eq$

Symbol	Parameters	Baseline scenario	Value range
Z	Borehole depth	4000 m	2000 – 6000 m
Nw	Number of wells	3 wells	2 – 3 wells
d	Fuel for drilling	5000 MJ/m	3000 – 7000 MJ/m
LT	Lifetime	30 y	20 – 40 y
f	Produced flow rate	62.5 kg/s	25 – 100 kg/s
P _{ORC}	Installed capacity ORC	2375 kW	1250 – 3500 kW
SFe	Enhancement scaling factor	5.25	0.5 – 10
LF	Load factor	0.90	0.85 – 0.95
Pp	Specific power of pumps	6.1 kW/(kg/s)	3.6 – 8.6 kW/(kg/s)

(Cucurachi et al. 2016; Lacirignola et al. 2017)

Symbol	Parameters	Value range	Probability distribution
z	Borehole depth	2000 – 6000 m	Uniform
Nw	Number of wells	2 – 3 wells	Uniform
d	Fuel for drilling	3000 – 7000 MJ/m	Uniform
LT	Lifetime	20 – 40 y	Normal distribution centered on LT=30 with σ =3.25
f	Produced flow rate	25 – 100 kg/s	Uniform
P _{ORC}	Installed capacity ORC	1250 – 3500 kW	2375 kW
SFe	Enhancement scaling factor	0.5 – 10	Lognormal distribution with σ =1, μ =0 and peak on Sfe=1
LF	Load factor	0.85 – 0.95	Uniform
Pp	Specific power of pumps	3.6 – 8.6 kW/(kg/s)	Uniform

$$\begin{aligned} & GHG_{EGS,A}\left[\frac{g\ CO_2eq}{kWh}\right] \\ &= \frac{z_A\cdot Nw_A\cdot (\alpha_1+\alpha_2\cdot d_A) + LT_A\cdot f_A\cdot \alpha_3 + P_{ORC,A}\cdot LT_A\cdot \alpha_4 + Nw_A\cdot Sfe_A\cdot \alpha_5}{LF_A\cdot LT_A\cdot (P_{ORC,A}-f_A\cdot P_{p,A})\cdot 8760} \end{aligned}$$

Based on Sobol indices (variance decomposition method) to identify key parameters:

$$S_i = \frac{Var[E(Y|X_i)]}{Var(Y)} = \frac{V_i(Y)}{Var(Y)}$$

$$S_{ij} = \frac{V_{ij}(Y)}{Var(Y)} \qquad S_{ijk} = \frac{V_{ijk}(Y)}{Var(Y)}$$

(Cucurachi et al. 2016; Lacirignola et al. 2017)

EGS: Dependence of GSA results on PDF

For emerging technologies, characterizing inputs' probability distribution functions (PDF) may be difficult

> Which is the effect of changing PDF on inputs' ranking from GSA?

EGS: Dependence of GSA results on PDF

Global sensitivity analysis (Sobol' method)

EGS: Effect of PDFs on GSA results

Possible descriptions (probability distribution functions) for each of the 9 input parameters for EGS LCA model

(Lacirignola et al. 2017)

EGS: Effect of PDFs on GSA results

Changing the distribution function for 1 input parameter and keeps other distributions as baseline

	-								
§ GSA	z	SFe	f	d	LF	LT	Pp	Nw	P _{ORC}
§1 (Baseline) ×100 bootstraps	Baseline	Baseline							
§ 2 (×100)	TYPE 2	Baseline	Baseline						
§ 3 (×100)	TYPE 3	Baseline	Baseline						
§ 4 (×100)	TYPE 4	Baseline	Baseline						
§ 5 (×100)	TYPE 5	Baseline	Baseline						
§ 6 (×100)	Baseline	TYPE 2	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline
§ 7 (×100)	Baseline	TYPE 3	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline
§ 8 (×100)	Baseline	TYPE 4	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline
§ 9 (×100)	Baseline	TYPE 5	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
§ 32 (×100)	Baseline	TYPE 2							
§ 33 (×100)	Baseline	TYPE 3							
§ 34 (×100)	Baseline	TYPE 4							
§ 35 (×100)	Baseline	TYPE 5							
§ 34 (×100) § 35 (×100)	Baseline Baseline	TYPE 4 TYPE 5							

(Lacirignola et al. 2017)

For example, using the 5 possible distribution functions for **LIFETIME (LT)**:

EGS: Effect of PDF on GSA results

For each of the 9 input parameters

Considering 3500 rankings after iterative GSA:

EGS: application of GSA results

Identification of **5** key input parameters among the **9** initial ones

→ Simplified model for LCA of EGS facilities

$$GHG_{EGS_Reduced} \left[\frac{gCO_2eq}{kWh} \right] = f(P_{ORC}, N_w, z, LT, f)$$
$$= \frac{Nw \cdot (\omega_1 \cdot z + \omega_2) + LT \cdot (\omega_3 \cdot f + \omega_4 \cdot P_{ORC})}{LT \cdot (P_{ORC} - f \cdot \omega_5)} \pm 5 \ gCO_2eq/kWh$$

$$\begin{split} \omega_1 &= 120.70 \left[gCO_2 eq/(m \cdot h/y) \right]; \ \omega_2 &= 5 \ 161.87 \left[gCO_2 eq/(h/y) \right]; \\ \omega_3 &= 61.82 \left[gCO_2 eq \cdot s/(kg \cdot h) \right]; \ \omega_4 &= 6.42 \left[gCO_2 eq/(kWh) \right]; \ \omega_5 &= 6.10 \left[(kW \cdot s)/kg \right]; \end{split}$$

• From complete parametric model

$$GHG_{EGS}\left[\frac{g\ CO_2eq}{kWh}\right] = \frac{z\ \cdot Nw\ \cdot (\boldsymbol{\alpha_1} + \boldsymbol{\alpha_2} \cdot d\) + LT\ \cdot f\ \cdot \boldsymbol{\alpha_3} + P_{ORC} \cdot LT\ \cdot \boldsymbol{\alpha_4} + Nw\ \cdot Sfe\ \cdot \boldsymbol{\alpha_5}}{LF\ \cdot LT\ \cdot \left(P_{ORC} - f\ \cdot P_p\right) \cdot 8760}$$

• to simplified model

$$GHG_{EGS_Reduced}\left[\frac{gCO_2eq}{kWh}\right] = \frac{Nw \cdot (\boldsymbol{\omega_1} \cdot z + \boldsymbol{\omega_2}) + LT \cdot (\boldsymbol{\omega_3} \cdot f + \boldsymbol{\omega_4} \cdot P_{ORC})}{LT \cdot (P_{ORC} - f \cdot \boldsymbol{\omega_5})}$$

ADVANTAGES

- ✓ Reduced number of input parameters (From 9 to 5)
- ✓ For some of the least influencing parameters, data were difficult to obtain → Simplified model facilitates data gathering

Conclusions & perspectives

- Need for a specific approach to deal with large uncertainty of emerging technologies in LCA
- Global Sensitivity Analysis (GSA) based on variancedecomposition methods (e.g. Sobol) allows key parameter identification and ranking
- The protocol proposed for GSA of emerging technologies helped to evaluate the influence of **distribution functions** of input parameters in GSA results
- a simplified parametric equation to estimate GHG impact from a reduced number of parameters was obtained.
- We aim to apply the same approach to deduce a set of simplified equations for a multi-criteria LCA

Part II: GSA applied to nanomaterials

 Case study: Graphene (GR) production by chemical reduction process (Based on publication by Arvidsson et al. 2014)

Symbols	Parameters	Baseline scenario
Par 1	Graphite + Potassium permanganate (KMnO ₄) + Hydrazine	2.55 g / g of GR
Par 2	Electricity RER medium voltage - 1	8.5 MJ / g of GR
Par 3	Peroxide (H ₂ O ₂)	4.675 g / g of GR
Par 4	Phosphoric acid $(H_3PO_4) + Sulfuric acid (H_2SO_4)$	33.15 g / g of GR
Par 5	Deionised water	0.935 g / g of GR
Par 6	Electricity RER medium voltage - 2	0.15 MJ / g of GR
Par 7	Transport - lorry >32 tons class 5	0.259 kg·km / g of GR

(Based on publication by Arvidsson et al. 2014)

Model for graphene production

7 independent input parameters

Graphene production: Parameters' contribution

Baseline result: 1.7 kg CO2 eq./g of GR

- Graphite + Potassium permanganate (KMnO4) + Hydrazine
- Electricity RER medium voltage 1
- Peroxyde (H2O2)
- Phosphoric acid (H3PO4) + Sulfuric acid (H2SO4)
- Deionised water
- Electricity RER medium voltage 2
- Transport lorry >32 tons class 5

Carbon footprint contribution

- 1. Electricity for Hummers' process (Par 2)
- 2. Acids (Par 4)
- 3. Graphite + $KMnO_4$ + Hydrazine (Par 1)
- 4. Electricity for chemical reduction (Par 6)
- 5. Peroxide (Par 3)
- 6. Transport (Par 7)
- 7. Deionised water (Par 5)

Symbols	Daramatora	Pacolina cooparia	CCD ²
Symbols	Parameters	Baseline scenario	(Pedigree Matrix)
Par 1	Graphite + Potassium permanganate (KMnO ₄) + Hydrazine	2.55 g / g of GR	1.51
Par 2	Electricity RER medium voltage - 1	8.5 MJ / g of GR	1.51
Par 3	Peroxide (H ₂ O ₂)	4.675 g / g of GR	1.51
Par 4	Phosphoric acid (H_3PO_4) + Sulfuric acid (H_2SO_4)	33.15 g / g of GR	1.51
Par 5	Deionised water	0.935 g / g of GR	1.51
Par 6	Electricity RER medium voltage - 2	0.15 MJ / g of GR	1.50
Par 7	Transport - lorry >32 tons class 5	0.259 kg∙km / g of GR	1.72

(Based on publication by Arvidsson et al. 2014)

Equivalent relative uncertainty

Sobol results- Only lognormal & equivalent uncertainties

		Par 2	Par 6	Par 4	Par 1	Par 3	Par 7	Par 5
		Electricity - 1	Electricity - 2	Acids	Graphite + KMnO4 + Hydrazine	Peroxide	Transport	Water
	1	100 000						
	2			100 000				
00	3				100 000			
ankin	4		100 000					
E E E E E E E E E E E E E E E E E E E	5					100 000		
	6						100 000	
	7							100 000

Graphene production: Prospective LCA model

/				
(
R	Μ	11	٩I	ES

Symbols	Parameters	Baseline scenario	Value range
Par 1	Graphite + Potassium permanganate (KMnO ₄) + Hydrazine	2.55 g / g of GR	0.85 – 4.25 g
Par 2	Electricity RER medium voltage - 1	8.5 MJ / g of GR	3.4 – 1133 MJ
Par 3	Peroxide (H ₂ O ₂)	4.675 g / g of GR	0.85 – 8.5 g
Par 4	Phosphoric acid (H_3PO_4) + Sulfuric acid (H_2SO_4)	33.15 g / g of GR	22.1 – 44.2 g
Par 5	Deionised water	0.935 g / g of GR	25 – 100 kg
Par 6	Electricity RER medium voltage - 2	0.15 MJ / g of GR	0.06 – 6 MJ
Par 7	Transport - lorry >32 tons class 5	0.259 kg∙km / g of GR	0.013 – 5.18 kg·km

(Based on publication by Arvidsson et al. 2014 and its references)

Inputs for the GSA – All distributions

Parameters	Value range	Baseline distribution	Alternative distributions			
		Type 1	Type 2	Туре 3		
Par 1	0.85 – 4.25 g	lognormal	Uniform	Triangular		
Par 2	3.4 – 1133 MJ	lognormal	Uniform	Triangular		
Par 3	0.85 – 8.5 g	lognormal	Uniform	Triangular		
Par 4	22.1 – 44.2 g	lognormal	Uniform	Triangular		
Par 5	25 – 100 kg	lognormal	Uniform	Triangular		
Par 6	0.06 – 6 MJ	lognormal	Uniform	Triangular		
Par 7	0.013 – 5.18 kg∙km	lognormal	Uniform	Triangular		

Difference between lognormal and uniform distribution for electricity used in Hummers' process

Pedigree approach propose much lower uncertainty than the value range found in the reference

Results for the GSA – lognormal + uniform

		Par 2	Par 6	Par 4	Par 1	Par 3	Par 7	Par 5
		Electricity - 1	Electricity - 2	Acids	Graphite + KMnO4 + Hydrazine	Peroxide	Transport	Water
	1	200 000						
	2		100 273	99 727				
۵۵	3			100 273	99 727			
ankin	4		99 727	1	100 273			
E E E	5					200 000		
	6						200 000	
	7							200 000

Results for the GSA – lognormal + triangular

		Par 2	Par 6	Par 4	Par 1	Par 3	Par 7	Par 5
		Electricity - 1	Electricity - 2	Acids	Graphite + KMnO4 + Hydrazine	Peroxide	Transport	Water
	1	200 000						
	2		100 383	99 617				
۵۵	3			100 383	99 617			
ankin	4		99 617		100 383			
E E	5					200 000		
	6						200 000	
	7							200 000

Results for the GSA – uniform + triangular

		Par 2	Par 6	Par 4	Par 1	Par 3	Par 7	Par 5
		Electricity - 1	Electricity - 2	Acids	Graphite + KMnO4 + Hydrazine	Peroxide	Transport	Water
Ranking	1	200 000						
	2		200 000					
	3			150 119	49 881			
	4			49 881	150 119			
	5			·		200 000		
	6						200 000	
	7							200 000

Results for the GSA – All distributions

		Par 2	Par 6	Par 4	Par 1	Par 3	Par 7	Par 5
		Electricity - 1	Electricity - 2	Acids	Graphite + KMnO4 + Hydrazine	Peroxide	Transport	Water
Ranking	1	300 000						
	2		199 867	89 137	10 996			
	3			188 894	111 106			
	4		100 133	21 969	177 898			
	5	•				300 000		
	6						300 000	
	7							300 000

Graphene production: Parameters' ranking

Baseline result: 1.7 kg CO2 eq./g of GR

- Graphite + Potassium permanganate (KMnO4) + Hydrazine
- Electricity RER medium voltage 1
- Peroxyde (H2O2)
- Phosphoric acid (H3PO4) + Sulfuric acid (H2SO4)
- Deionised water
- Electricity RER medium voltage 2
- Transport lorry >32 tons class 5

Global sensitivity Analysis / Ranking

- 1. Electricity for Hummers' process (Par 2)
- 2. Acids (Par 4)
- 3. Graphite + $KMnO_4$ + Hydrazine (Par 1)
- 4. Electricity for chemical reduction (Par 6)
- 5. Peroxide (Par 3)
- 6. Transport (Par 7)
- 7. Deionised water (Par 5)

65th LCA Discussion Forum Zurich - May 24, 2017

Thank you for your attention

Prospective LCA modelling How to deal with uncertainties ? Part I : A new approach based on GSA

Part II : The Graphene Case study

Martino Lacirignola (ADEME, FR) Paula Pérez-López, Philippe Blanc, **Isabelle Blanc** (Centre O.I.E. - MINES ParisTech, FR) Robin Girard (Centre PERSEE - MINES ParisTech, FR) **Didier Beloin-Saint-Pierre** (EMPA, CH)

EGS: LCA model (GHG emissions)

EGS: LCA model (GHG emissions)

A) General modeling framework for LCA

 $\begin{cases} \Psi \\ GHG_{EGS,A} \left[\frac{g \ CO_2 eq}{kWh} \right] = \frac{z_A \cdot Nw_A \cdot (\boldsymbol{\alpha_1} + \boldsymbol{\alpha_2} \cdot d_A) + LT_A \cdot f_A \cdot \boldsymbol{\alpha_3} + P_{ORC,A} \cdot LT_A \cdot \boldsymbol{\alpha_4} + Nw_A \cdot Sfe_A \cdot \boldsymbol{\alpha_5}}{LF_A \cdot LT_A \cdot \left(P_{ORC,A} - f_A \cdot P_{p,A} \right) \cdot 8760} \end{cases}$

With $\alpha_1 = 498761.36 \text{ gCO}_2 eq/m$; $\alpha_2 = 90.56 \text{ gCO}_2 eq/MJ$; $\alpha_3 = 487363.03 \text{ gCO}_2 eq \cdot s/(kg \cdot y)$; $\alpha_4 = 50603.13 \text{ gCO}_2 eq/(kW \cdot y)$; $\alpha_5 = 25757089.05 \text{ gCO}_2 eq$