

Modelling of releases of nanoparticles into the environment

Bernd Giese

ISR - Institut für Sicherheits- und Risikoforschung,

Univ. f. Bodenkultur Wien

(vorm. Univ. Bremen)

Michael Steinfeldt (Uni Bremen)

<u>Fadri Gottschalk</u> ETSS AG – Engineering, technical and scientific services

www.etss.ch

2 🖸 🗋 🖸 🔀 🚱 🖸 💋 🙆 🛓 🗊 😭

for Sustainable Nanomaterials

The BMBF project DENANA - Design Criteria

Universität für Bodenkultur Wien

Arbeitspakete und ihre Vernetzung **AP H: Herstellung** AP A: Anwendung: Synthese, Funktionalisierung Technische Prüfung der NP und Charakterisierung der NP AP V: Verbleib AP U: Verhalten in AP L: Langzeitwirkung **AP K: Koordination** Nachweis, Stabilität, Anlage und Beprobung Ableitung von Designkriterien Gewässern und Boden Stabilität, Corona-Bildung Identifikation von Bewertung der Ökotoxizitätstests, Wechselwirkungen; Identifikation von Indikatoren Transport in Umweltmedien und Transport; Frühwarnindikatoren Abgleich mit der OECD und -Organismen **Ökotoxizitätstests** Ökotoxizitätstests market analysis **AP E: Exposition** lifecycle modeling Marktanalyse spreading model Lebenszyklus-Modellierung Ausbreitungs- u. Transport-Modellierung risk profile determination Risikoprofilermittlung

Data base of the modeling

• Manufacturer of ENM

- Number, production volumes
- Import and export volumes

• ENM processing

- Product Categories
- ENM consumption, ENM losses (+ emission paths)
- Export and import of ENM-containing products
- Utilization of ENM-containing products as well as emissions during application
- **Disposal** (regional resolution)
 - Sewage treatment (+ fraction for transfer to sewage sludge)
 - Landfill (+ transition to waste water, water, ground water)
 - Waste incineration (+ content in slag / ash)
 - Direct entry into air, water, soils
 - Recycling (+ share in recycled products)
 - Conversion into other compounds / forms during and after the utilization phase (e.g., formation of Ce₂S₃ in sewage sludge)

Universität für Bodenkultur Wien

Product Use for SiO₂, CeO₂, and Ag-ENM

Universität für Bodenkultur Wien

ENP- Typ	Produktkategorien	
SiO2	Coatings, textiles, building materials, polyesters, epoxy resins, adhesives, sealants, putty, lubricants Cosmetics, toothpaste, foodstuffs, medicines, Plastics, elastomers (silicone elastomers, tires, soles) Colors, inks support material Absorption and drying agents	Rußpartikelfiltersystem FAP
CeO ₂	Catalyst material Fuel additive (catalyst) Varnishes and coatings Polishing agents for glass and silicon wafers Nickel metal hydride (NiMH) batteries	Sesare ADTIV
Ag	Coating, plastics Detergents, filters, spray, cosmetics, medicine, foodstuffs Entertainment electronics, Computers textiles	

Production volumes international

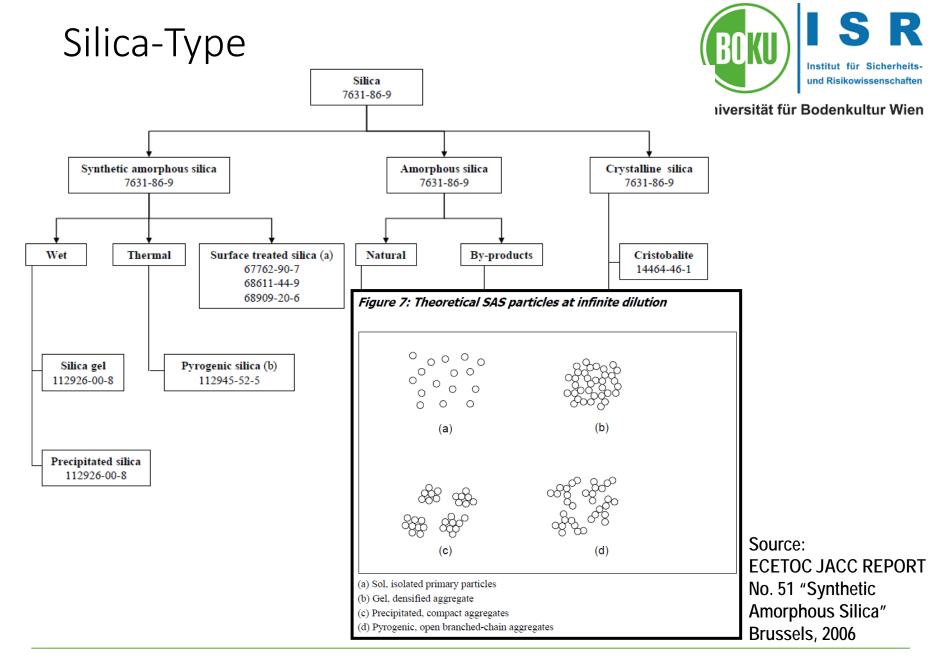
107

106

105

104

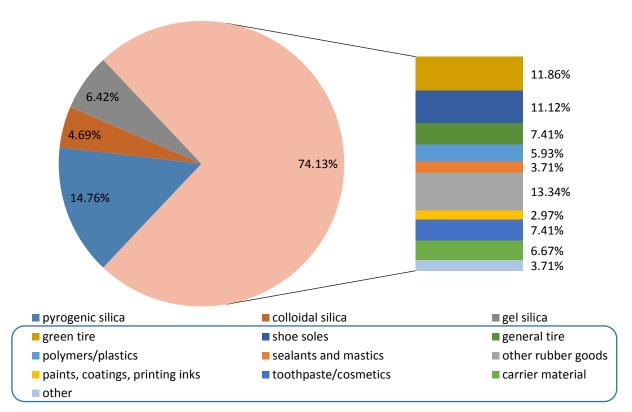
10³


10²

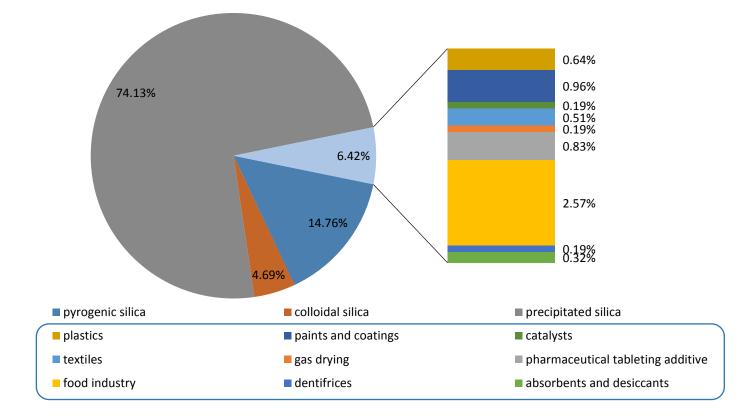
10¹

10⁰

Produktion in t/a


SiO₂-ENP Ag-ENP 10³ 1000 ~ 400 1.500.000 500.000 [>]roduktion in t/a ~ 90.000 10² 55 5.500 22 CeO₂-ENP 10¹ ~9.000 10.000 10000 Piccimoetal.2012 Piccimoetal.2012 2015/16 Imediani 104 Piccinno et al. 2012 Own survey 2015/16 (median) 2015/16 (median) 10⁰ Future Markets 2012 Future Markets 2012 10³ Produktion in t/a 10² 55 10¹ Quelle: COMMENTS OF THE SILVER 10⁰ Future Markets 2010 NANOTECHNOLOGY WORKING GROUP FOR REVIEW BY THE EUROPEAN COMMISSION SCIENTIFIC COMMITTEE ON EMERGING AND NEWLY IDENTIFIED HEALTH RISKS (SCENIHR), Silver Nanotechnology Working Group (The Silver Research Consortium LLC), Durham 2014

Precipitated SiO₂



Aufteilung nach: Joint Assessment of Commodity Chemicals (JACC) – Report (2006) des European Centre for Ecotoxicology and Toxicology of Chemicals on Synthetic Amorphous Silica

SiO₂-gel

Aufteilung nach: Joint Assessment of Commodity Chemicals (JACC) – Report (2006) des European Centre for Ecotoxicology and Toxicology of Chemicals on Synthetic Amorphous Silica

6 Life cycle driven release and material state/location models developed:

A) Release

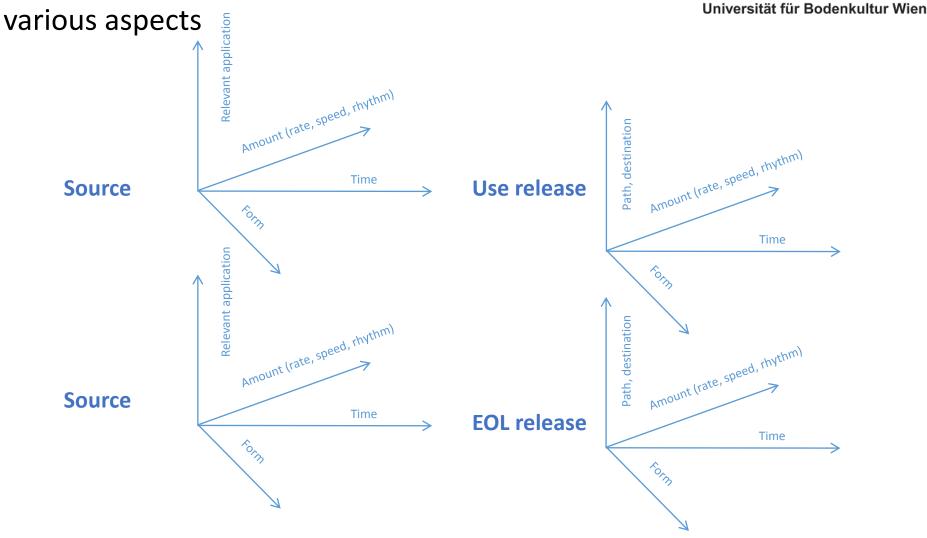
- 1) Life cycle release during product use (including delay due to use phase)
- 2) End of life release (EOL) (including delay due to non-release use phases)

B) Delay

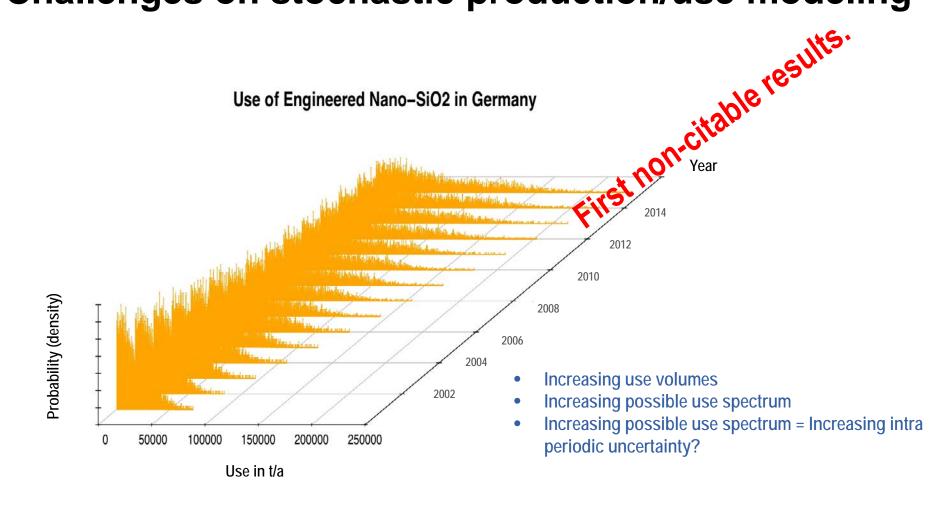
- 3) Life cycle release delay during non-release use time periods
- 4) EOL-Release delay in pre-EOL pahases

Out there

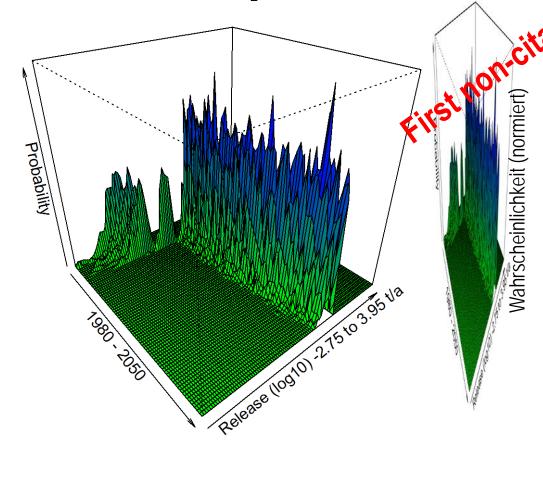
- 5) Already out there (nature) from product use sources
- 6) Already out there (nature) from product EOL sources


For the basic methods used, see:

Walser und Gottschalk,


Journal of Cleaner Production 80 (2014) 241e251 http://dx.doi.org/10.1016/j.jclepro.2014.05.085

Life cycle models developed cont. Dealing with distinct uncertainty/variability on


Life cycle models developed cont. Challenges on stochastic production/use modeling

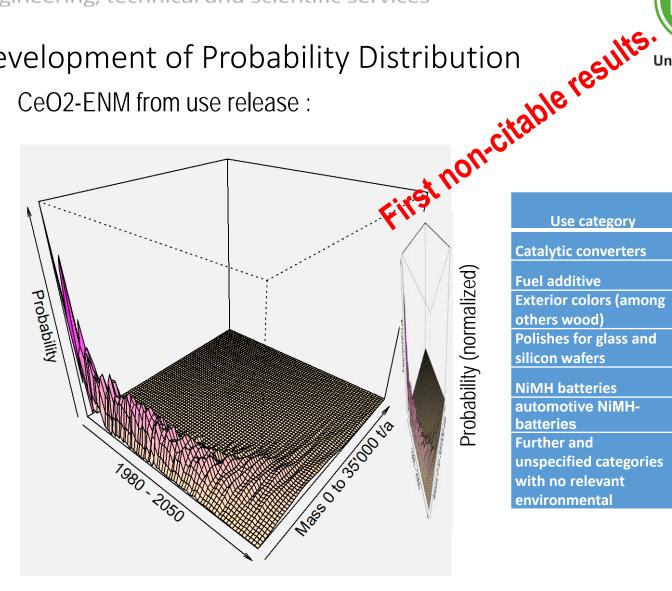
Development of Probability Distribution

Total release of CeO₂-ENM:

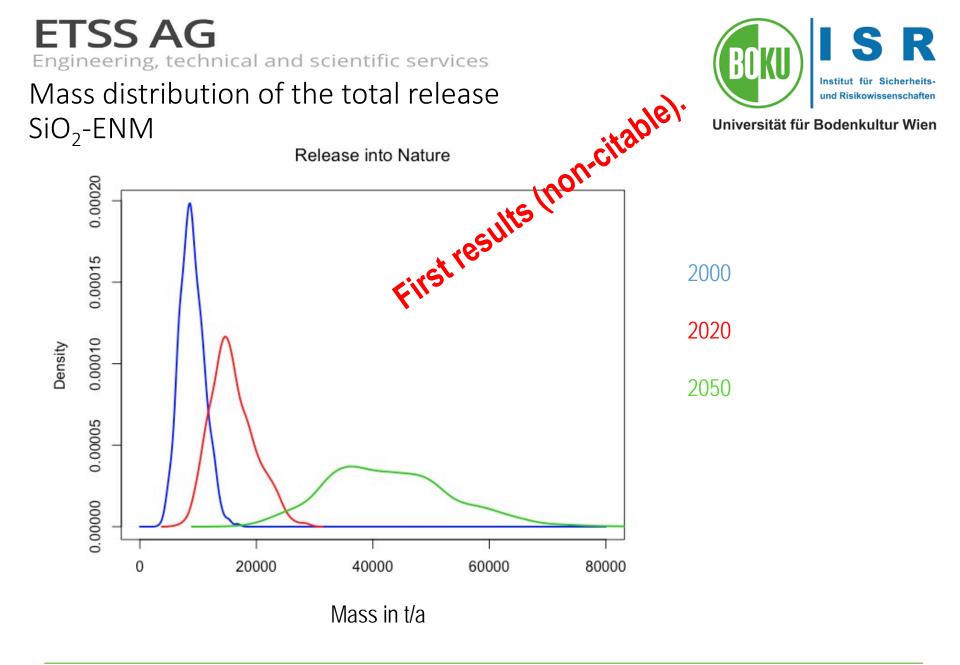
bution	cults. Univers	ität für Boder	nkultur Wien
bution	Use category	Share in %	Application start
	Catalytic converters	28,3	1980
ert)	Fuel additive	0,1	2000
normie	Exterior colors (among others wood)	0,5	2000
eit (Polishes for glass and silicon wafers	51,9	1990
ichk	NiMH batteries	16,9	1990
heinl	automotive NiMH- batteries	2,3	2000
Wahrscheinlichkeit (normier	Further and unspecified categories with no relevant environmental	no data available	

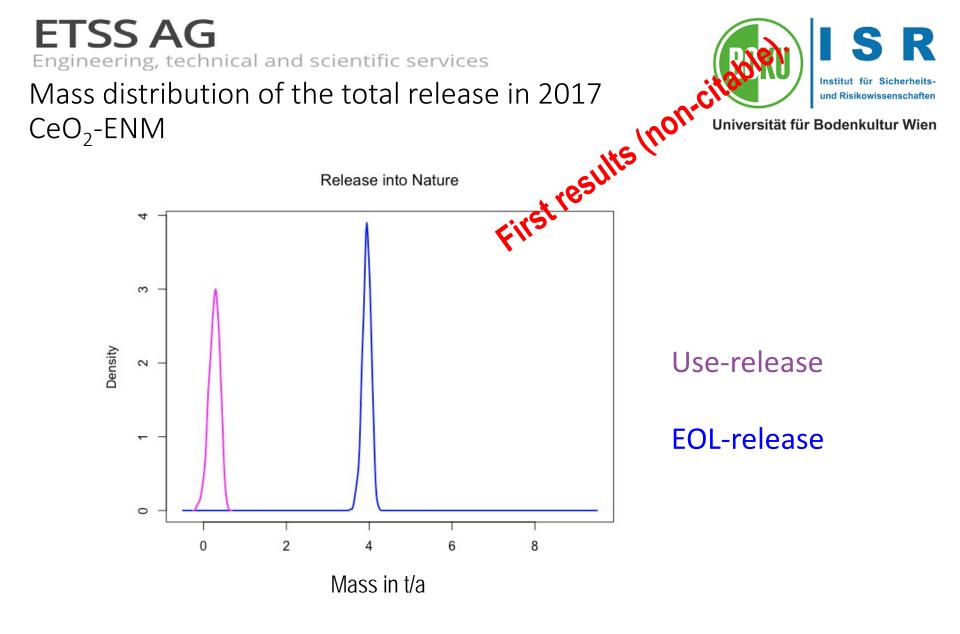
For the basic method used, see:

Walser und Gottschalk,


Journal of Cleaner Production 80 (2014) 241e251 http://dx.doi.org/10.1016/j.jclepro.2014.05.085

Development of Probability Distribution


CeO2-ENM from use release :



Universität für Bodenkultur Wien

Use category	Share in %	Application start
Catalytic converters	28,3	1980
Fuel additive	0,1	2000
Exterior colors (among		
others wood)	0,5	2000
Polishes for glass and		
silicon wafers	51,9	1990
NiMH batteries	16,9	1990
automotive NiMH-	,-	
batteries	2,3	2000
Further and		
unspecified categories		
with no relevant	no data	
environmental	available	

Preliminary findings

- Dynamic modeling is possible with existing data
- Increasing uncertainties in quantity, temporal and spatial dimension (type of compartments)
- Statements on the potential concentration distribution are nevertheless possible
- (Up to now) results partially correspond to previous predictions

What would be helpful in the future:

- Information on the production volume of the ENM and the degree of dissemination of the corresponding technologies (for example number of vehicles equipped)
- Independent determination of real, application-related emissions

Contact

<u>contact@etss.ch</u> Fadri Gottschalk ETSS AG www.etss.ch

Chaflur 136B CH- 7558 Strada Schweiz Tel. +41(0)81 860 10 85

Fortunagasse 15 8001 Zürich, Schweiz

+41(0) 43 233 82 67

Universität für Bodenkultur Wien

bernd.giese@boku.ac.at Bernd Giese Institut für Sicherheits- und Risikowissenschaften (ISR) Universität für Bodenkultur (BOKU) Borkowskigasse 4 1190 Wien (Austria)

Tel. +43-1-47654-818 15