Integrating fate and toxicity of engineered nanoparticles into LCIA

Prof. Olivier Jolliet Quantis / University of Michigan, School of Public Health Environmental Health Science ojolliet@umich.edu

With inputs from Beatrice Salieri, Dingsheng Li Alexis Laurent, Kim Ettrup, Ulrika Carlander, Anna Kounina, Joris Meesters, Joris Quick

1. LCA Nano Framework 2. NP LCI 3. NP tox: Fate& exposure 4. (Eco)toxic effects 5. Conclusions Workshop on Life Cycle of nanotechnologies: EPA-EU 2-3 October 2006, Wilson center

- There is no generic LCA of nanomaterials, just as there is no generic LCA of chemicals.
- The ISO-framework for LCA (ISO 14040:2006) is suitable.

- Processes are under development and may be rapidly evolving. This is a very similar situation to e.g. electronic industry.
- Try to characterize the main manufacturing pathways/ technologies (lithography, precipitation, SPM, depositions).
- Main challenge and gap: direct toxicity of nanoparticle. Start now!

1. LCA Nano Framework 2. NP LCI 3. NP tox: Fate& exposure 4

4. (Eco)toxic effects

5. Conclusions

USEtox framework for human toxicity and ecotoxicity of chemicals and nanoparticles

Hauschild et al., 2008. The Search for Harmony and Parsimony. Environmental Science & Technology, 42(19), 7032-7036

Rosenbaum et al., 2008: USEtox factors for factors for human tox and freshwater ecotox, Int J LCA, 13(7)532-546.

USEtox framework is Valid for nanoparticles, but fate, exposure and effect factors need to account for nano-specific mechanisms

1. LCA Nano Framework 2. NP LCI 3. NP tox: Fate& exposure 4. (Eco)toxic effects 5. Conclusions Fate Factor (FF) Application of Simpleboxnano4 to nano TiO2

Simplebox4nano residence time In the environment for nano-TiO2

Residence time [day]	Air	Water	soil
Free	0.5	0.06	0.0001
Aggregated	7.2	41	15
Attached	1.8	41	58

Factor 650 between free and aggregated !

fects 5. Conclusions

Salieri & Jolliet - Simplebox4nano/USEtox From 15 to 4 compartments

	Free in	Agg in	Att in				Free in soil	Agg in							
	atmosph	atmosph	atmosph	Free	Agg	Att in	pore	soil pore	Att to	Free in	Agg in	Att in	Free in	Agg in	Att in
k (day-1)	ere	ere	ere	in rain	in rain	rain	water	water	solids soil	water	water	water	sediment	sediment	sediment
Free in atmosphere	-3.486	0	0	0	0	0	0	0	() C) 0	0	C	0	0
Agg in atmosphere	1.854	-1.498	0	0	0	0	0	0	() C) 0	0	C	0	0
Att in atmosphere	0.004	0	-1.691	0	0	0	0	0	() C) 0	0	C	0	0
Free in rain	0.039	0	0	-9.460	0	0	0	0	0) C) 0	0	C	0	0
Agg in rain	0	0.016	0	0	-9.460	0	0	0	() C) 0	0	C	0	0
Att in rain	0	0	0.153	0	0	-9.460	0	0	0) () 0	0	C	0	0
Free in soil pore wa	t 0.119	0	0	7.760	0	0	-1591.804	0	() C) 0	0	C	0	0
Agg in soil pore wat	(0	0.021	0	0	7.760	0	1372.478	-0.008	() C) 0	0	C	0	0
Att to solids in soil	0	0	0.076	0	0	7.760	219.317	0	-8.22E-07	' C) 0	0	C	0	0
Free in water	0.009	0	0	0.240	0	0	0.008	0	(-29.320) 0	0	0.001	. 0	0
Agg in water	0	0.001	0	0	0.240	0	0	0.008	(27.261	-0.009	0	C	0.001	0
Att in water	0	0	0.002	0	0	0.240	0	0	8.22E-07	2.052	. 0	-1.023	C	0	0.004
Free in sediment	0	0	0	0	0	0	0	0	0	2.43E-05	6 0	0	-45.738	0	0
Agg in sediment	0	0	0	0	0	0	0	0	() C	0.002	0	27.744	-0.001	0
Att in sediment	0	0	0	0	0	0	0	0	() C) 0	1.016	17.992	. 0	-0.004

100%

Total Fate factor	Free in	Free in	Free in	Free in
[days]	air	soil	water	sediment
Total in air	3	0	0	0
Total in soil	28,642	167,684	0	0
Total in water	14	73	128	117
Total in sediment	46	246	433	741

5

Fate factor – comparison

Fate factor Residence time of TiO2

Fate Factor	Free in water	Agg in water	Ratio
	[days]	[days]	Agg/Free [-]
Salieri & Jolliet 15 x 15	0.034	127-137	4029
Salieri & Jolliet 4x4	0.034	127	3735
Ettrup & Laurent	0.63	45	71
	Factor [-]	Factor [-]	
Ratio Ettrup/Salieri	0.05	3.0	

Exposure factor – Fish bioconcentration factor

Biodistribution of nanoparticles in humans → enables the link to in-vitro measurements

Generic Physiologically based PharmacoKinetic Model framework for NPs

Fig 1. Framework of the PBPK model

5. Conclusions

Generalized Physiologically Based PharmacoKinetic model (PBPK)

Li et al., 2014, Nanotoxicology, 8, Issue SUPPL. 1, 128-137.

Carlander et al., International Journal of Nanomedicine, 11, 625–640

Parameter	Unit	PAA-PEG	PAA	Gold	TiO ₂
CL	mL/h	I.	2.4	0.2	N/A
CL,	mL/h	1	1.7	1.2	N/A
k _{ab0}	l/h	1	2.9	0.7	82
k _{sab0}	l/h	1	1.5	8.8	57
M_cap	μg	1	1.9	0.2	0.5
P	Unitless	1	0.5	0.5	3.8
X _{fast}	Unitless	1	0.7	910	111
X _{rest}	Unitless	1	1.3	1.7	0.2
X	Unitless	1	1.0	103	21.1

 Table 5 Nanoparticle-specific parameters of our physiologically

 based pharmacokinetic model

Notes: Optimized values expressed relative to the corresponding values for PAA-

PEG.

as few adjusted parameters as possible

4. (Eco)toxic effects

5. Conclusions

Generalized PBPK model

Log₁₀ (µg gold nanorods observed)

Log₁₀ (µg TiO₂ nanoparticles observed)

The model explains 97% of the observed variation in polyacrylamide NPs amounts across organs, between 68% and 95% for NanoCeO2, 88% for gold Also runs for NPs and 92% for TiO2 NPs.

Carlander et al., International Journal of Nanomedicine, 11, 625–640

Framework for human toxicity and ecotoxicity of chemicals and nanoparticles

Effect factor Impact/kg_{in}

based on NOAEL

J Nanopart Res (2017) 19:130 DOI 10.1007/s11051-017-3816-8

RESEARCH PAPER

Human health no-effect levels of TiO₂ nanoparticles as a function of their primary size

Alexis Laurent D · Jack R. Harkema · Elisabeth W. Andersen · Mikołaj Owsianiak · Eldbjørg B. Vea · Olivier Jolliet

130 Page 8 of 15

J Nanopart Res (2017) 19:130

Table 1 Summary of reviewed in vivo studies with ranges of NOAEL and LOAEL for TiO2 particles

	Exposure routes	Number of studies (papers) ^a	Number of tests ^a	Number of left-censored NOAEL data	Number of right-censored LOAEL data	Number of interval-censored NOAEL/LOAEL data	NOAEL (LOAEL) ranges (mg/kg-bw/d)
E	Ingestion	6 (6)	15	3	5	1/1	40–24,000 (8–1000)
	Inhalation	15 (26)	45	7	14	6/6	0.0836-4.05 (0.0171- 10.5)
3	Total retrieved	21 (32)	60	10	19	7/7	-

No Observed Adverse Effect Level NOAEL for TiO2 a data rich chemical, most studies in East Asia

$$\log(NOAEL) = \alpha + \beta_{size} \log(d) + \beta_{species, route} I_{species, route} + \beta_{LOAEL} I_{LOAEL}$$

Supplementary Table S6. Regression analysis (MLR) on interval-censored data converted to human equivalent doses for inhalation and ingestion exposure to $TiO_2 (n=14)^a$

Parameter	Estimate (95% CI)	Std. Err.	P values
Intercept	-2.228 (-3.36; -1.87)	0.335	1.42E-5 **
Log Size	0.796 (0.43; 1.16)	0.163	6.43E-4 **
Inhalation	0 (reference, see intercept)	-	-
Ingestion	1.592 (1.15; 2.04)	0.199	1.20E-5 **
LOAEL	0.725 (0.42; 1.03)	0.137	3.46E-4 **
Adj. R2	0.911		
Q ² (LOO)	0.886		
p-value for model	3.98E-6 **		

log (NOAEL) as a function of log (d) R2 = 0.52, 0.76 on restricted set

NOAEL to ED50 to EF

EF in Cases of non-cancer / kg_{in}

$$EF_{hum}^{inh} = 1.29 \times 10^1 \times d^{-0.796}$$

$$EF_{hum}^{ing} = 3.31 \times 10^{-1} \times d^{-0.796}$$

Laurent et al., 2017. J Nanopart Res 19:130

Characterization factors for freshwater human non cancer – comparison with USEtox CFs

CFs non-cancer for emissions into air

Ettrup et al., 2017. ES&T 51, 4027-4037 1. LCA Nano Framework 2. NP LCI 3. NP tox: Fate& exposure 4.

4. (Eco)toxic effects

5. Conclusions

Framework for human toxicity and ecotoxicity of chemicals and nanoparticles

Hauschild et al., 2008. The Search for Harmony and Parsimony. Environmental Science & Technology, 42(19), 7032-7036

Rosenbaum et al., 2008: USEtox factors for factors for human tox and freshwater ecotox, Int J LCA, 13(7)532-546.

Ecotoxicity: LC50s \rightarrow HC50

Particle type	Endpoint [mgTiO ² /L]	Specie	Exposure	Size (pristine) [nm]
				Bacteria
Nanocrystaline	>112.5	V. fischeri	30-min EC50	6
Sigma Aldrich	>100	V. fischeri	15-min EC50	40
Sigma Aldrich	>11987	V. fischeri	30-min EC50	47.5
71				

HC50 and	Free & Agg water
effect Factor	[days]
HC50 mg/L	18.6
EF PAF m3/kg	26.9

Ecotoxicological effect factor

- Ecotoxicological impacts may already be incorporated in LCA, as soon as EC50 are available
- For comparative assessment, use the HC50, the concentration at which 50% of the species are affected = geometric mean of the EC50s of all species tested (not the PNEC):

$$CF = F_{w} \cdot \frac{\tau_{1/2w}}{\ln(2)} \cdot \frac{0.5}{HC_{50}}$$

Bioavailability modeling (e.g. sulfides)

Characterization factors for ecotoxicity – comparison with USEtox & other studies

CFs Ecotox for emissions into freshwater

Conclusions

- Possible to adapt USEtox to nano speciation based on compartment specific ratios between free / agg and at
- First human and ecotox effect factors + characterization factors available based on literature review for TiO2 or silver
- Need to extend to a larger number of nanoparticles, in particular BAFs and human tox

Some of the nanoparticles have been extensively studied