GUIDEnano

GUIDEnano: A tool for risk assessment of nano-enabled products considering the whole life cycle

Socorro Vázquez-Campos

HEHS Group Leader LEITAT Technological Center Barcelona, Spain

The rationale

Scientific data gaps

No specific regulatory guidance

How should we proceed?

One decade of intensive research on nanosafety

Continuously increasing NM-enabled products to the market

Societal concerns (but society cannot easily discriminate in which cases there should be concern and which not)

Industry needs that this knowledge is transferred in an organized manner, in a way that it can become informative for their own cases

The rationale

How does it compare to existing Tools?

Nomo		RA		Tuno	O tt
Name	Worker	Consumer	Environment	Туре	Ουιρυι
ANSES Tool	Х			Tool	CB
Sttofenmanager Nano	Х			ТооІ	CB
CB NanoTool	Х			ТооІ	CB
Swiss Prec. Matrix	Х	Х	Х	Tool	CB
Groso's Method	Х			DSS	CB
US NANOTOOL	Х			DSS	CB
STM Nano	Х			Model	CB
SSD			Х	Model	Q
NanoSafer 2	Х			Model	CB/SQ
NanoRiskCat	Х	Х	Х	Model	CB
NRST	Х	Х	Х	DSS	CB
FINE			Х	Model	Q
REACHnano ToolKit	Х	Х	Х	Tool	CB/Q
LICARA NanoScan	Х	Х	Х	ТооІ	CB
MARINA	Х	Х	Х	Strategy	CB/Q
ConsExpo nano		Х		Tool	Q
SimpleBox4nano	Х	Х	Х	Model	Q
DF4nanoGrouping	Х	Х	Х	Strategy	CB

- Most of the methods focus on occupational human health
- Less than half of the methods include the environment
- Most of them are control banding methods
- A number of methods assess nano-enabled products

How does it compare to existing Tools?

GUIDE

Comprehensive:

GU

- Includes all phases of the risk assessment
- Focuses on environmental and human RA

Allows assessments with different levels of data availability

- When limited data is available, worse case defaults are used
- When further information is available, this is used to refine parameters in the risk assessment process

Risk Assessment estimate is quantitative

Flexible structure built to allow extensions and updates following scientific/ regulatory progress

GUIDE version 3.0

This tool will guide the nano-enabled product developers (industry) into the design and application of the most appropriate risk assessment & mitigation strategy for a specific product.

Learn more »

GUIDE **Conceptual framework** Exposure | Hazard Assessment -Risk Assessment -Activities (Nano)materials Compartments Report -Case Materials Similarity Activities Hazard Exposure Compartments / Fate **Risk assessment and management**

Getting started

To use this tool and get started you will need an account.

Learn more »

T fr

(F

|--|

If you already have an account please:

	Logi	n »																
ē?		•	0	0			0		5	8	0	0				0		0
0	0		0	0	0	•		0	٥	-			2		0		0	121
630	00 0	0 00	000	0	Ĩ	0	00	00	8				00	0	00		°.	0
000	00000	0000	00000	00000	000	000	000	000	0000	0000	000	000	000	000	000	000	0000	0000
	© 20	17 G	UIDEn	ano														Pro
	versid	on 3.	0.41.0	310														
	Down	rod i	w Into	lligon	t Oh	incte												

1	GUIDEnano	About	Contact	ndustry) nent & r	into the nitigation
	Log in.				
	Group				
	ThinkWorks			De	evelopr
	User name			This	tool is develo ine.
	Ralph			Т	hinkWorks »
	Password				
	•••••				0
~	Remember me	?		0 00 0	
	Log in			gramme	

Development

This tool is developed using ThinkWorks Intelligent Objects engine.

(FP7/2007-2013) under grant agreement №604387

Powered by Intelligent Objects

version 3.0.41.0214

 \odot

Life Cycle Activities

Activities

Activities

Ac	tivities	3				
		activity name		setting/scale	life cycle phase	locations
ŧ	2	Synthesis of TiO2 NP's	•	small industry $\checkmark ullet$	synthesis $\checkmark ullet$	1
ŧ	S	Production of TiO2 NP formulation	•	small industry V	production $\checkmark ullet$	1
ŧ		Coating the ceramic tiles with spray gun	•	small industry V	assembly $\checkmark ullet$	1
ŵ		Curing the ceramic tiles with coating	•	large industry V	assembly $\checkmark ullet$	1
ŵ		Citywide use + Weathering	•	other domestic V •	use/maintenance \checkmark •	5000
ŵ	S	Removal and disposing of old tiles	•	small industry V	end of life $\checkmark ullet$	1
+				·	•	-

Activity card wizard

Life cycle stage: assembly Select the activity card from the library:select Cosmetic manufacturing process Surface spraying of liquids	×
Select the activity card from the library:select Cosmetic manufacturing process Surface spraying of liquids	
select Cosmetic manufacturing process Surface spraying of liquids	
Cosmetic manufacturing process ^ Surface spraying of liquids	
Surface spraying of liquids	
	920
Spray application of paints on e.g. ships (using hvlp or airless techniques)	030
Spray application of paints by spray can	0
Spray application of paints by pneumatic spraying	0 0 0
Activities with relatively undisturbed surfaces (no aerosol generation)	00 00 00
Immersion of objects	000000000000000000000000000000000000000
Gluing	

GUIDEnano

Building in Release Knowledge

Activity: Production of TiO2 NP formulation

C)vervi	ew	Gen	eral info	Input, output and release	Duration	(Nano)material flow	I	100 l/h						×
Act	ivity i	nput							Is the operationa Rate metric: Vo	time of Iumetri	this activity relative to t ic flow \checkmark •	he outp	ut amo	unt? 🝸	'es ∽
				input de	escription	material	relative to		Rate value:	10 125 day	0.0 • [/h	 ✓ 			
ŧ	E	TiO2	NP's to	be added to t	he formulation	TiO2 NP's 💼	output produced formu	latior	Operational time.	125 08	ys 🔪				Close
Act	ivity o	output	t(s)							_				_	
				output d	escription	1	material	relativ to	/e relati amou	ve Int	total amour	nt	unit	ref.	rate
Ť	Ð	prod	uced fo	rmulation	•	TiO2 NP susp	ension (formulation) 💼				30000	0.0	ē		100 l/h 🗗
+															
Act	tivity r	eleas	e(s)				•								
				release d	lescription	released material	relative to	relative release RMM's		s t	total release un		ref.	rate	location/
ŧ	U	TiO2	NP's re	leased into inc	door air	TiO2 NP's 💼	input TiO2 NP's to be added to the formulation ਜ਼	2.5 9	no		600000	g 🕫		2	01 g/h/¤
+					2.5 %			×							
Ov The	erall r e tota	nass I [outp	balance out + re	e [output + re lease] of nan	An amount of this [release TIO2 NP's released into the formulation] (B), A / B material (A): TIO2 NP's material (B): TIO2 NP's material (B): TIO2 NP's Metric [Percentage	indoor air] (A) is expressed as the	emount relative to [input TiO2 NP's to be added to	- <mark>35!</mark>		2 T R Ir	11 gh 11 me unit to express the duration of th 11 ate unit to express the rate of the rei 12 dicate the way the release time is re 12 a fixed time per cycle 13 a fixed time per cycle 14 a fixed time per cycle 15 a time concentration of the 16 at time concentration of the 16 dicate the percentage: 11 10 10 11 a single activity cycle: 1 10 10 11 a single activity cycle: 1 10 11 11 11 a single activity 11 11 11 11 11 11 11 11 11 11 11 11 11	the release in: lease in: c klated to a s period within ycle duratio uptime entire cycle 00.0 • rear 9 days ity cycle: 12	n <u>h</u> 1/h ' ingle activit n a cycle n 2 h 25 days	y cycle	*
					Activity Card Library (ART revised value)		Cle	J			Number of cycles per location. 1 Iotal duration of release over all cycl delease rate per existance 301 gal delease uptime per priod: 8 h Telease downtime per period: 16 h Number of periods per cycle: 375	les per loca uring 125 de 9	tion: 125 da ays per cyc	iys le	Close

GUIDEnano Tool

Activity: Production of TiO2 NP formulation

(Nano)materials

Activities Case

(Nano)materials

Below you can add '+' the different (nano)materials, substances and mixtures relevant before, during and after the life of the nano enabled product. Think of synthesized nanoparticles, manufactured materials with nano features, released nanomaterials into the environment. But also the (nano)materials, chemicals and substances used for toxicity tests and read accross.

Sc	enario) relevant (nano)materials:					
		name	description	category	nano constituents	chem.	hazard statements
ŧ	•art.	TiO2 coated tiles 50x50 (virgin)	Tiles to be applied outside 50x50 cm and 20 kg/m2	article	TiO2 NP's		constituent(s) with hazard label(s) exist!
ŵ	3	TiO2 NP's	Titanium Dioxide (anatase) nano particles used to c	nanoparticle	TiO2 NP's	TiO2 (s)	H351 (also constituent(s) with hazard label(s) exist!)
ŧ	Ø	TiO2 NP suspension (formulation)	Suspension applied onto the tiles	suspension	TiO2 NP's		constituent(s) with hazard label(s) exist!
ŵ	B	Ceramic (untreated)	New ceramic material (uncoated)	composite			
ŵ	N	Ceramic TiO2 NP sprayed with formulation	Ceramic with sprayed formulation (uncured)	composite	TiO2 NP's		constituent(s) with hazard label(s) exist!
ŵ	N	Ceramic TiO2 NP coated and cured (virgin)	New TiO2 NP coated ceramic material	composite	TiO2 NP's		constituent(s) with hazard label(s) exist!
ŵ	•art.	Weathered/ used tiles 50x50	Old tiles to be disposed of after use phase	article	TiO2 NP's		constituent(s) with hazard label(s) exist!
ŵ	N	Weathered ceramic (old)	Aged ceramic material (less NP's)	composite	TiO2 NP's		constituent(s) with hazard label(s) exist!
ŧ	3	TiO2 NP's used in tox study	NP used in toxicity study	nanoparticle	TiO2 NP's used in tox study	TiO2 (s)	
+	sel	ect					·
, .	arti sub nar nar nar	cle stance/mixture o-object ostructured aggregate ostructured agglomerate		° ° ° °	°°°°° °°°°°	0 0	

(Nano)material classes

(ISO 80004 compliant)

Composite, Layers

Mixture, Gel, Gas

Etc.

Suspension, Emulsion

- Nano-object 🐏
- Substance 😵
 - Pure substance
 - Mixture | Structure]
- Article
- Eco medium (zone or ecotox specific)
- Chemical | Element (leave constituents)

NOAA

╋

nano enabled

Nanocomposite, Nanosuspension, Nano-emulsion Nano-aerosol Etc.

Structuring the (nano)material

- Article, *TiO*₂ photocatalytic tile 50x50 cm
 - Nanocomposite, *TiO*₂ *NP coated ceramic material* [role = contained]
 - Composite, Ceramic [role = solid matrix]
 - Slim porcelane [role=layered]
 - Engobe [role=layered]
 - Etc..
 - Nano particle, TiO₂ NP [role = surface bound]
 - TiO₂ chemical [role = core]
 - Phosphorus [role = impurity]

Size and shape

TiO2 NP's

Physico-chemical characteris	tics Constitue	nts(2) Prese	nce(7)											
Nanomaterial category: nanopa	rticle 칠													
Identification	Shape													
Shape and size	Morphology / sh	ape: spherical `	\checkmark											
Physical properties	Mean size													
Surface properties	Mean nanoscale	d particle diamet	er (D1 ~ D	2 ~ D3) in r	ım:		55 •							
Function(s)	Aspect ratio:	1.0		,										
Mass conversion	Size method/di	stribution												
Chemical info	0		M											
Reactivity info	Method used:	data available?	res ∨ ticle Sizer	(APS)	 ✓ ● S 	ize type	e: aerodyna	mic size ∨	•					
Classification & Labelling	L			· · ·										
Toxicity studies	Size distributio	n												
Quality: (78.0%)	Metric: Numbe	r based ∨ Distr	ibution:	og Normal	✓ Geome	tric me	an:	60.0	Geometric star	ndard deviati	on:	1.7	72 •	
	Primary size dis	stribution							Size di	ctribution				
	diameter	%	m2/g	mass%	number%		100		Size ui	scribución				
	1 - 10nm	0.0	200.4	0%	0%									
	10 - 30nm	10.0	66.03	0.04898%	10.01%		80			Λ.				
	30 - 100nm [72.6	19.87	13.04%	72.67%				Å					
	100 - 300nm	17.2	6.603	84.25%	17.22%		60		/ \	(/)				·O· mass based
	300 - 500nm	0.1	3.757	2.659%	0.1001%		8			X \				-O- number based
	1000nm+	0.0	0.002003	0%	0%		40			()				
	Particle density: Particles per gra Average mass p Surface area pe Average volume	3.77 g/cm3 am: 1.8E14 partic per particle: 5.642 r gram: 8.287 m2 e based size: 102	cles/g [TiO E-15 g/pa l/g [TiO2 N .5 nm	2 NP's] rticle [TiO2 IP's]	NP's]		20	IOnm	30nm Donm	muoo	тиро	•	0um+	
	Fercentage of p	arucies in nañoso	aie. 02.0 7	70			0	1 -	10 - 30 - 10	m - 001 1	300 - 5	500 - 10	1000	

Environmental fate

World model

Case Activities (Nano)materials Compartments Exposure | Hazard Assessment - Risk Assessment -

Compartments

En	vironmental compartmer	nts				
	type		name			
ŧ	Indoor air	Factory hall		•		
ŧ	Outdoor air	Air outside factory		•		
ŵ	Sewage network	Sewage network system	m	•		
ŧ	Fresh water	River		•		
ŧ	Sediment (fresh water)	River sediment		•		
ŧ	Estuarine water	Estuarine delta, river e	nding	•		
ŵ	Landfill site	Local landfill site		•		
ŵ	Soil	Soil		•		
+	select					
Co	Indoor air Outdoor air Soil Fresh water Estuarine water Marine water Sediment (fresh Sediment (estua Sediment (marin Sewage network Waste water trea Landfill site	water) Irine water) Ne water) K atment plant	River River River sediment	nme	ental compartments	Local landfill site

GUIDEnano Tool

Factory hall & outdoor (release of TiO₂ NP)

River & Sediment (Static release of TiO₂ NP's)

GUIDE Kinetic Fate in River & Sediment

GUIDEnano Tool

Chemical reactions

		category	name/identifier		phase		role of constituen	18	conc.	unit
8	\$	chemical	water	T	liquid 🗸 🔹	1	liquid medium \vee	•	0.000481995996	moit
8	\$	chemical	oxigen	I	liquid \vee •		dispersed \checkmark	•	0	molf
8	\$	chemical	H+ @	-	ions 🗸 •		dissolved ~	•	11.7	molf®
8	2	chemical	phosphate	T	ions v e		dissolved V	•	0	mol/1 of
8	8	chemical	calcium	1	ions 🗸 🔹		dissolved ~	•	4.258-5	molf
8	8	chemical	magnesium	1	ions 🗸 •	1	dissolved ~	•	4.89E-5 •	mold
8	2	chemical	sodium	Ĩ	ions 🗸 •		dissolved \checkmark	•	1.35E-5	mold
8	2	chemical	potassium	1	ions 🗸 •		dissolved \sim	•	1.165-5	molific
8	\$	chemical	nitrate	I	ions 🗸 🔹		dissolved \vee	•	0.000108 •	mold
8	\$	chemical	cloride •	1	ions 🗸 🔹		dissolved ~	•	1.58-5 •	mol/ \$
8	\$	chemical	sulfate	1	ions \vee •		dissolved ~	•	1.000174246384 •	molt \$
	2	chemical	bicarbonate	1	ions 🗸 🔹		dissolved V	•	4.518-5	molts
	2	chemica	ironSulfate e		sold Ve		dispersed ~		300.0 •	ugt o

Zone: A fresh water zone

importing process imported species source	ce zone		
process	input species	output species	destination zone
Immission		species start	local
	species start rate	species start	
Ag(s) + 1/2 O2(aq) + 2H+ -> 2Ag+ + H2O(aq)	silver NP Silver 0 8 g/s 2 O2(aq) 0 0 g/s	Ag+ 0 2 H2O(aq) 0	local
	3 H+ 0 0 0 9/6	Degraded[silver NP] 0	
2 Ag+ + FeS(s) -> Ag2S(s) + Fe2+	species start rate	species start 1 Ag2S(s) 0	local
	2 FeS(s) 0 0 g/s	2 Fe+2 0	
Ag2S(s) + 2O2 -> 2Ag+ + SO4-2	Species start rate 1 Ag2S(s) 0 0 g/s 2 Q2(ag) 0 0 g/s	species start 1 Ag+ 0	local
	importing process imported species sources process Immission Ag(s) + 1/2 O2(aq) + 2H+ -> 2Ag+ + H2O(aq) 2 Ag+ + FeS(s) -> Ag2S(s) + Fe2+ Ag2S(s) + 2O2 -> 2Ag+ + SO4-2	importing processimported speciesprocessinput speciesImmission $species = start rateAg(s) + 1/2 O2(aq) + 2H+ -> 2Ag+ + H2O(aq)species = start rate2 O2(aq) = 0002 Ag+ + FeS(s) -> Ag2S(s) + Fe2+1Ag+Ag2S(s) + 2O2 -> 2Ag+ + SO4-2species = start rateAg2S(s) + 2O2 -> 2Ag+ + SO4-2species = start rate$	importing processimported speciessource zoneprocessinput speciesoutput speciesImmission1 silver NP 0Ag(s) + 1/2 O2(aq) + 2H+ -> 2Ag+ + H2O(aq)speciesstartSpeciesstart1 silver2 O2(aq)0 0 g/s2 H2O(aq)3 H+0 0 g/sDegraded[silver NP] 02 Ag+ + FeS(s) -> Ag2S(s) + Fe2+1 Ag+0 0 g/sAg2S(s) + 2O2 -> 2Ag+ + SO4-2speciesstartAg2S(s) + 2O2 -> 2Ag+ + SO4-21 Ag2S(s) 0 0 g/s2 SO4-2 0

Exposure Module

Estimate ultimate exposure resulting from the release of NM during an activity

- Estimate directly derived from the fate models
- □ The Tool will be coupled to the **GUIDEnano exposure scenario** library (based on MARINA Library)
- The Tool contains internal exposure models and also guides the user into appropriate external exposure assessment models for each type of activity
- User estimate
- Measured data

For human exposure only

GUIDEnano Tool

Exposure Estimations

Ac	tivities	(Nano)ma	terials	Compartments	Exp	osure Hazard	Asse	essmen	t 👻	Risk As	sessment	Ŧ
Fr	Fresh water species, near outlet											
	Exposur	e paths	Exposu	ire scenario(s)	Haz	ard Assessmer	nt	Risk	Asse	ssment		
Ē	expos River	sure zone(s near outlet	s) expo to {TiO2	sure relevant m 2 NP's} ਛ	aterial							
	exposi	ure near out	llet (TiO	2 NP's)]						
	S	ource/ mod	lel	peak conc.		ong-term cond		unit	use			
đ	ī zone o	lerived estir	nate 🕫	7.859991958319	• 7.	859970861661	• •	ug/l 🖻	∽ •			
+	zone user meas	t derived esti estimate sured data	imate									

GOAL

✓ Predict Hazard reference values for human and environmental health

DNEL-like and PNEC-like values

✓ Predict need for hazard classification for major hazard endpoints

Irritant, mutagenic, sensitizer...

First - Extract from GUIDEnano databases existing reference values /hazard classification for similar materials

Second - Propose worst case default values based on generic grouping

Third - Derive tailored reference values /hazard classification based on available toxicity studies

A) Evaluate each study in terms of :

- **SIMILARITY** of the TEST MATERIAL vs. the EXPOSURE RELEVANT MATERIAL
- **RELEVANCE** of the TEST for the HAZARD endpoint to be assessed
- **QUALITY**: Is it "Trustable"?

B) Derive a Hazard value for the Environmental Compartment / Human Endpoint of interest

Hazard Assessment

Workers in factory

General	Available Protective Controls	Exposure paths	Exposure s	cenario(s)	Hazard	Assessme	nt Ris	< Assess	ment		
🞸 repe	ated dose toxicity (inhalation)	Workers in facto Exposure relevan	ory repeated nt material: TiO	dose toxici 2 NP's	t <mark>y (inhalati</mark>	on)					
🗞 repe	ated dose toxicity (dermal)	Are there regulat	ory binding or	provisional C	ELs/DNEL	s for the ex	posure re	levant n	naterial? (long term (exposure) No 🗸	•
carc	inogenicity (inhalation)	STEP 2 Are toxicity studi	es with the exp	osure relev	ant or sim	ilar materia	ıl available	? Yes	~]•		
🕹 carc	inogenicity (dermal)	Select existing of	or new toxicity s	studies with t	he <mark>exposu</mark>	re relevan	t or simila	r materia	al		
🛞 muta	agenicity	t & STIS S	gui TIS - short terr	de line n inhalation :	studies (sul	bacute)	ne study	stu TiO2 NP	died material 's used in tox study		
🔹 repr	oductive toxicity (inhalation)	+select							•		
🚯 repr	oductive toxicity (dermal)	Available studies	s Score	Overrid	e Accepted	Study	Effect Lev	el(s)	DNE	L(s)	Uncertainty
💰 acut	e toxicity (inhalation)	STIS	similarity @ (quality	0.78 0.9 œ 1.0 -	Yes	subacute	NOAEL 1.	3 mg/m3	long-term DNEL 0.0	0005889 mg/m3 🕫	22.22x
🕹 acut	e toxicity (dermal)		relevance	0.3 0.3 @							
abso	orption/ accumulation/ elimination							Г			
🕹 resp	iratory sensitization	1							STEP 3b, I	Default v	alues
🕹 skin	sensitization	1							based	on genei	ric
🕹 skin	irritation/corrosion	1							gr	ouping	
A dave	lonmontal toxicity (inhalation)										

Lowest DNEL is used

Activities (Nano)materials Compartments Exposure | Hazard Assessment - Risk Assessment -

Workers in factory

Case

General	Available Protective Controls	Exposure paths	Exposure	scen	ario(s)	Hazard	Assessmer	nt Risk As	ssessmen	t			
🚸 гере	ated dose toxicity (inhalation)	Workers in facto Exposure relevant	ry repeate t material: Ti	d dos O2 N	e toxicity P's	y (inhalatio	on)						
🚸 гере	ated dose toxicity (dermal)	STEP 1 Are there regulatory binding or provisional OELs/DNELs for the exposure relevant material? (long term exposure) No V											
& carci	inogenicity (inhalation)	STEP 2 Are toxicity studie	s with the ex	ιposι	ire releva	ant or simi	lar materia	I available?	Yes \vee •	•			
	inogenicity (dermal)	Select existing or	new toxicity	stud	ies with th	ne exposu	re relevant	t or similar m	aterial				
V carci	inogenicity (dermal)			guide	e line			name study	stuc	died material			
🚸 muta	genicity	💼 🛓 STIS ST	TIS - short te	rm inl	halation s	tudies (sub	acute)	STIS xyz	TiO2 NP	's used in tox study			
🚸 герго	oductive toxicity (inhalation)	DECD 41	3 Subchro	nic In	halation T	oxicity: 90	day Study		TiO2 NP	's used in tox study			
🚸 repro	oductive toxicity (dermal)	+select	1		1	1				•			
🚷 acute	e toxicity (inhalation)	Available studies	Score	0 78	Override 09r□	Accepted	Study	Effect Level(s	5)	DNEL(s)		Uncertainty	
acute	e toxicity (dermal)	STIS	quality	1.0	-	Yes	subacute	NOAEL 1.3 m	ig/m3 long	g-term DNEL 0.0005	889 mg/m3 🗗	22.22x	
Vuoditt	conterf (demining		relevance	0.3	0.3 🗗								
🚯 abso	orption/ accumulation/ elimination		similarity 🗗	0.78	0.78 🕫	-							
🐼 respi	iratory sensitization	OECD 413	quality relevance	0.0	0.0 ₪ 0.5 ₪	No							
🚸 skin	sensitization	STEP 4				·							
skin 🕹	irritation/corrosion	Final safety limit value for this endpoint: Type Final safety limit value Uncertainty											
deve	elopmental toxicity (inhalation)												
🚸 deve	elopmental toxicity (dermal)	Low		Me	dīum		Hig						
				F	RCR								

Study based PNEC derivation

Available studies	Score		Override	Accepted	Study Effect Level(s)	Lower Boundary Effect Level(s)	Uncertainty	
	similarity 🗗 0		0.9 🗗					
OECD 203	quality	1.0	-	Yes	short-term LC50 124500 µg/l	LC50 112050 µg/l 🗗	1.11x	
	relevance	1.0	-					
	similarity 🗗	0.0	0.9 🗗					
OPPTS 850.1300	quality	1.0	-	Yes	long-term NOEC 3000 µg/l	NOEC 2700 µg/l 🗖	1.11x	
	relevance	1.0	-					
	similarity @	0.0	0.9 @					
OECD 215	quality	1.0	-	Yes	long-term NOEC 500 µg/l	NOEC 450 µg/l 🖻	1.11x	
	relevance	1.0	1. 					

STEP 3a

Overall overviews

Case Activities (Nano)materials Compartments Exposure | Hazard Assessment - Risk Assessment -

Human health

Human exposure									End	lpoints h	uman haza	rd as	sessmei	nt							
population exposure	repeated	dose	toxicity	carcin	ogen	icity	mutagenicity	reproduc	tive	toxicity	acute	e toxi	city	absorption/ accumulation/ elimination	sensi	tizati	on	irritation/ corrosion	developm	ental	toxicity
	inhalation	oral	dermal	inhalation	oral	dermal		inhalation	oral	dermal	inhalation	oral	dermal		respiratory	oral	skin	skin	inhalation	oral	dermal
2 Workers in factory																					
- Worker exposure (formulation mixing)	\$ 1	-	\$ T	🚸 - <u>1</u> 2	-	<u>_</u>	📀 – 📀	🚸 - <u>1</u> 2	-	🍪 - <u>1</u> ?	<u>_</u>	-	<u>_</u>	<u>∢</u> - <u>1</u> ?	♦	-	\$ T	A - 19	♦ -19	-	<u>\$</u> - <u>1</u> ?
Living nearby the factory																					
- People living nearby the factory (< 500m)	\$	-	-	<u>\$</u> -17	-	-	♦	<u>_</u>	-	-	<u>\$</u> -17	-	-	<u>∢</u> - <u>1</u> ?	♦	-	-	-	\$ 49	-	-

Case Activities (Nano)materials Compartments Exposure | Hazard Assessment - Risk Assessment -

Environmental fate

Environmental fate	Hazard endpoints environ	mental hazard assessment
specie exposure		
Fresh water species, near outlet	PNEC fresh water	PNEC secondary poisoning
- The fresh water species exposed to the TiO2 particles living nearby the outlet of the sewage network.	\$ T	🕸 🔅
Fresh water sediment species, near outlet	PNEC fresh water sediment	
-	🅸 - <u>19</u>	
Fresh water species, downstream	PNEC fresh water	PNEC secondary poisoning
-	<u>م</u>	🄄 🔅
Fresh water sediment species, downstream	PNEC fresh water sediment	
-	🍲 - <u>19</u>	-
Marine water species	PNEC marine water	PNEC secondary poisoning
-	🍲 👍	🔄 🚯
Soil specie	PNEC soil	PNEC secondary poisoning
Soil specie	PNEC soil	PNEC secondary poisoning

RMM effects

Scenario without gloves

Scenario with gloves

GUIDEnano Tool

Output report

Case Activities (Nano)materials

Compartments

Exposure | Hazard Assessment -

Risk Assessment -

Report -

GUIDE	<section-header></section-header>	CUDENT
CUECCESS Carear Carear 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	CUCCENT NUM NUM NUM NUM NUM NUM NUM NUM	CUDERCE ELegenda Actuanto Juneta Marcine Act
CUBERT 4.1 on the first of the	CUCCUT The Theorem and the Cuccut and the Cucut and t	Bit I and the second

Leitat Acondicionamiento Tarrasense Tel. (+34) 93 788 23 00 Fax (+34) 93 789 19 06

www.leitat.org info@leitat.org

Terrassa

C. de la Innovació, 2 08225 Terrassa (Barcelona)

Barcelona C. Pallars, 179-185 08005 Barcelona

Barcelona Parc Científic de Barcelona C. Baldiri Reixach, 15-21 08028 Barcelona

Vilanova del Camí Centre d'Innovació Anoia C. dels Impressors, 12 08788 Vilanova del Camí (Barcelona)

y la Innovación Nrisibie de Gessia e brovación

SOCIAL NET:

THANK YOU

1 . 91.

Socorro Vázquez-Campos- svazquez@leitat.org HEHS Group Leader