

Using land use & land cover datasets to assess variability in estimates of land use change and associated GHG emissions in selected regions of Indonesia

67th LCA Discussion Forum, ETH Zürich, 3rd of November 2017

Sybrand van Beijma (PhD)

Data Scientist Earth Observation Agrimetrics / Rothamsted Research Collaboration between:

UNIVERSITY OF LEICESTER

Introduction

Background

- Main goal is to assess variability of Greenhouse Gas (GHG) emissions estimates from several existing Land Use/Land Cover (LULC) data sets
- Special attention given to GHG emissions from peat soils.
- This could help monitor emissions related to Palm Oil (PO) industry, which is responsible for large-scale LULC change and related GHG emissions in main producing countries, Malaysia and Indonesia.

Palm Oil plantation

Introduction

Study areas

- Three Indonesian provinces:
 - North Sumatra (Sumatera Utara)
 - Riau
 - Central Kalimantan (Kalimantan Tengah)
- All study areas contain peat soils
- PO industry well developed in all study areas

Study area	Total area (ha)	Peat soil area (ha)	Peat soil of total (%)
North Sumatra	7,241,177	348,020	4.81
Riau	9,117,318	4,058,456	44.51
Central Kalimantan	15,344,440	3,004,890	19.58

Location of study areas in Indonesia

Data source	Data type	Spatial resolution (m)	Geographic cover	Updates	URL data archive
ESA CCI Land Cover (CCI)	LULC	300 x 300 (MERIS)	Global	Yearly between 1992-2015	http://maps.elie.ucl.ac.be/CCI/viewer/
Centre for Remote Imaging, Sensing and Processing (CRISP)	LULC	250 x 250 (MODIS)	Southeast Asia	2000, 2010, 2015*	<u>https://ormt-</u> <u>crisp.nus.edu.sg/ormt/Home/Disclaimer</u>
Indonesia Ministry of Forestry (MoF)	LULC	100 x 100 (Landsat)	Indonesia	1990, 1996, 2000, 2003, 2006, 2009, 2011, 2012, 2013, 2015	http://www.greenpeace.org/seasia/id/Global/se asia/Indonesia/Code/Forest-Map/en/index.html
Global Forest Watch (GFW)	Forest cover change	30 x 30 (Landsat)	Global	Yearly between 2000-2016	http://data.globalforestwatch.org/

CCI LULC data

- Developed by ESA CCI Land Cover initiative as a global data set
- <u>Global (vague) LULC</u> <u>class descriptions, no</u> <u>specific plantation class</u>
- Well documented methodology
- Initially based on MERIS (300x300m) data
- After recent reprocessing, data now available with yearly updates between 1992 and 2015.

Cropland rainfed

Cropland rainfed - Herbaceous cover Cropland rainfed - Tree or shrub cover Cropland irrigated or post-flooding Mosaic cropland (>50%) / natural vegetation (tree/shrub/herbaceous cover) (<50%) Mosaic natural vegetation (tree/shrub/herbaceous cover) (>50%) / cropland (<50%) Tree cover broadleaved evergreen closed to open (>15%) Tree cover broadleaved deciduous closed to open (>15%) Tree cover broadleaved deciduous closed (>40%) Tree cover broadleaved deciduous open (15-40%) Tree cover needleleaved evergreen closed to open (>15%) Tree cover needleleaved evergreen closed (>40%) Tree cover needleleaved evergreen open (15-40%) Tree cover needleleaved deciduous closed to open (>15%) Tree cover needleleaved deciduous closed (>40%) Tree cover needleleaved deciduous open (15-40%) Tree cover mixed leaf type (broadleaved and needleleaved) Mosaic tree and shrub (>50%) / herbaceous cover (<50%) Mosaic herbaceous cover (>50%) / tree and shrub (<50%) Shrubland Shrubland evergreen Shrubland deciduous Grassland Lichens and mosses Sparse vegetation (tree/shrub/herbaceous cover) (<15%) Sparse shrub (<15%) Sparse herbaceous cover (<15%) Tree cover flooded fresh or brakish water Tree cover flooded saline water Shrub or herbaceous cover flooded fresh/saline/brackish water Urban areas Bare areas Consolidated bare areas Unconsolidated bare areas Water bodies Permanent snow and ice

LULC map Central Kalimantan from CCI, 2015

Variability in LULC & GHG estimations, 67th LCA Discussion Forum

CRISP LULC data

- Developed by Centre for Remote Imaging, Sensing and Processing in Singapore as LULC data set covering Southeast Asia
- Specific LULC classes for plantations
- Well documented methodology
- Based on interpretation of MODIS (250x250m) imagery
- Updates in 2000, 2010 & 2015.
 <u>2015 data based on different</u> <u>methodology, therefore not</u> <u>comparable to 2000 & 2010 data</u>

LULC map Central Kalimantan from CRISP, 2015

MoF LULC data

- Developed by Ministry of Forestry of Indonesia
- Specific LULC classes for plantations
- <u>Exact methodology unclear,</u> primarily based on visual interpretation and manual mapping
- Based on Landsat (30x30m) imagery. For this study resampled to 100x100m
- Irregular updates between 1990 and 2015, in recent years almost yearly.

Primary Dry Land Forest Secondary Forest Primary Mangrove Forest Primary Swamp Forest Timber Plantation Shrubland Plantation Housing Bare Land Cloud Savannah Water Bodies Ocean/River Secondary Mangrove Forest Secondary Swamp Forest Swamp Shrubland Dry Rice Land Dry Rice Land Mixed w/Scrub Pc Rice Land (Sawah) Fish Pond Airport Mining Snow Swamp

LULC map Central Kalimantan from MoF, 2015

Data

Cross-comparison LULC data sets

Mapcurves analysis to compare LULC data sets

- Shows similarity between categorical maps (like LULC maps) by using one map as original and one as reference and calculating overlap of each LULC class of original with LULC class of reference
- Indication of consistency in spatial overlap between LULC classes of two maps
- It does not give information about relative quality of maps

Hargrove, W.W., Hoffman, F.M., Hessburg, P.F., 2006. Mapcurves: A quantitative method for comparing categorical maps. J. Geogr. Syst. 8, 187–208. doi:10.1007/s10109-006-0025-x

Data

Cross-comparison LULC data sets

Results Mapcurve analysis

- Highest consistencies are:
 - North Sumatra: 25.7%
 - Riau: 29.1%
 - Central Kalimantan: 21.8%
- MoF data is best original map for North Sumatra & Riau, CCI for Central Kalimantan
- CRISP best reference map in all three regions

	CRISP <-> CCI		MoF <->	CCI	MoF <-> CRISP		
	CRISP ->	CRISP <-	MoF ->	MoF <-	MoF ->	MoF <-	
	CCI	CCI	CCI	CCI	CRISP	CRISP	
North Sumatra	0.2281	0.2107	0.2069	0.1185	0.2571	0.1603	
Riau	0.2019	0.2646	0.1764	0.1072	0.2906	0.1468	
Central Kalimantan	0.1543	0.2175	0.1573	0.1117	0.2038	0.1137	

Analysis LULC change maps

Indication of LULC changes between map updates

> • For example: for MoF data for Central Kalimantan between 1990 and 2015 283 different types of change observed from one LULC class to another

 \sim

 \sim

 \checkmark

 \sim

 \sim

 \checkmark

• From this information historic GHG emissions estimates calculated

MoF-based map of LULC changes in Central Kalimantan between 1990-2015

Analysis

Cross-comparison LULC change between LULC data sets

- Some extreme LULC changes observed, likely to be related to new mapping methodology
- No clear correlation between data sets

Analysis GHG emission factors

- Compiled by professor Susan Page, University of Leicester
- Literature study of
 - Aboveground Biomass (AGB) stock values for LULC classes, expressed in Mg C/ha
 - Carbon emission values from organic soil degradation, expressed in Mg C/ha/yr

Agus, F., Henson, I., Sahardjo, B.H., Harris, N., van Noordwijk, M., Killeen, T., 2013. Review of emission factors for assessment of CO2 emission from land use change to oil palm in Southeast Asia 7–28.

Agus, F., Gunarso, P., Sahardjo, B.H., Harris, N., Noordwijk, M. Van, Killeen, T.J., 2010. Historical Co 2 Emissions From Land Use and Land Use Change From the Oil Palm Industry in Indonesia , Malaysia and Papua New Guinea 65–88.

Collective LC class	CCI class	CRISP class	MoF class	C stock value (Mg C/ha)
Primary forest – intact, natural forest with dense canopy	Tree cover, broadleaved, evergreen, closed to open (>15%)	Lowland evergreen forest	Primary dry land forest	233±72
Secondary forest – disturbed forest with evidence of logging			Secondary dry land forest	128±53
Peatswamp Forest	Tree cover, flooded, fresh or brackish water	Peatswamp forest	Primary swamp forest	157±68
Secondary Peatswamp Forest			Secondary swamp forest	102±37
Mangrove Forest	Tree cover, flooded, saline water	Mangrove	Primary mangrove forest	116±56
Secondary Mangrove Forest			Secondary mangrove forest	101±15
Scrub – small trees and woody shrubs, early stage forest regrowth	Shrubland evergreen; sparse vegetation (tree, shrub, herbaceous cover)	Lowland open	Scrubland (on mineral soils)	31±6
Swamp Scrubland			Swamp scrubland (on peat soils)	25±9
Grassland – dry soils			Savannah	3±1
Plantations	Cropland, irrigated or post- flooding	Large scale oil palm plantations	Plantations	37±10
Timber Plantations			HTI (hutan temanan industri)	41±17
Rice Land			Rice land	4±2
Agroforestry (mixed tree crops)	Mosaic cropland	Lowland mosaic		65±18
Settlements	Urban areas	Urban	Housing	7±3
Bare land			Bare land	0
Water bodies	Water bodies	Water	Bodies of water, fish pond	0

Analysis

GHG emission estimation model

- Initial calculation of LULC change between updates, which class changed into another class
- Then calculation of carbon emissions/sequestration related to AGB loss/gain
- If change occurred on organic soils, then yearly emissions from soil degradation added

Analysis GHG emission tables

Tables showing GHG emissions calculated from LULC data between two updates, using carbon conversion factors

 GHG emissions split between AGB and soil emissions

LULC class at t0	LULC class at t1	Hectare change	AGB emission factor (Mg C/ha)	AGB emissions (Mg C)	Soil emission factor (Mg C/ha/yr)	Soil emissions (Mg C)	Total emssions (Mg C)
Tree cover, broadleaved, evergreen, closed to open (>15%)	Cropland, rainfed	930	222	206460	14	130200	336660
Tree cover, broadleaved, evergreen, closed to open (>15%)	Cropland, irrigated or post-flooding	9	196	1764	11	990	2754
Tree cover, broadleaved, evergreen, closed to open (>15%)	Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)	53047	168	8911896	14	7426580	1633847 6
Tree cover, broadleaved, evergreen, closed to open (>15%)	Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)	13793	168	2317224	14	1931020	4248244
Tree cover, broadleaved, evergreen, closed to open (>15%)	Shrubland	228	202	46056	5	11400	57456
Tree cover, broadleaved, evergreen, closed to open (>15%)	Sparse vegetation (tree, shrub, herbaceous cover) (<15%)	161	230	37030	0	0	37030
Total emissions: 21020620 Mg C in 10 years.							
Yearly emissions: 2102062 Mg C per year.							

Analysis GHG emission maps

Maps showing GHG emissions between two map updates

- Carbon emissions and sequestration mapped
- High carbon emissions observed in peat soil areas

Analysis

Cross-comparison GHG emissions different LULC data sets

- In general large variability observed, CRISP emissions higher than from CCI and MoF data
- Extreme GHG emissions for MoF 2015 in Central Kalimantan, likely to be related to new mapping methodology
- Some consistency between peat soil emissions for MoF and CCI in all areas

Analysis

Cross-comparison GHG emissions different LULC data sets

• Tables comparing estimates of GHG emissions from different LULC data sets

2000-2010/2011									
Emissions per year (Mg C yr ⁻¹)									
	North Sumatra								
	CCI (2000-2010) CRISP (2000-2010) MoF (2000-2011)								
Mineral	1,332,551	34.5	3,473,117	58.7	871,984	34.6			
Peat	2,526,168	65.5	4,943,071	41.3	1,651,461	65.4			
Total	3,858,718		8,416,188		2,523,446				
Riau									
Mineral	9,533,148	33.2	29,246,758	28.7	4,676,420	17.0			
Peat	19,174,905	66.8	11,784,303	71.3	22,905,655	83.1			
Total	28,708,052		41,031,060		27,582,075				
		Centr	al Kalimantan						
Mineral	6,698,051	62.3	11,693,997	55.9	7,229,204	59.1			
Peat	4,055,255	37.7	14,791,021	44.1	4,997,529	40.9			
Total	10,753,306		26,485,018		12,226,733				

2010/2011-2015									
Emissions per year (Mg C yr ⁻¹)									
North Sumatra									
	CCI (2010-2015) MoF (2011-2015)								
Mineral	491,073	47.8	4,036,280	82.5					
Peat	536,465	52.2	857,838	17.5					
Total	1,027,538		4,894,117						
Riau									
Mineral	4,054,158	32.12	4,671,123	23.2					
Peat	8,571,318	67.88	15,443,351	76.8					
Total	12,625,476		20,114,473						
	Central	Kalima	ntan						
Mineral	2,811,681	58.5	8,277,973	44.2					
Peat	1,994,455	41.5	10,472,336	55.9					
Total	4,806,135		18,750,309						

Discussion

Methodology

- This study not intended to get realistic carbon emission estimates.
- Simplistic model, not taking into account:
 - Emissions from other GHG gases (N₂0, CH₄)
 - Emissions related to fires
 - Continued degradation of peat soils after analysis period

Fires in Central Kalimantan

Discussion

Results

- GHG results highly variable
 - Obvious changes in mapping methodology
 - Difficulties to assign AGB values to vague class descriptions
 - Historic satellite data sources highly variable
 - Spatial resolution
 - Temporal resolution & completeness data archive
 - Quality of data (clouds, sun angles)
- Recommended LULC data set for GHG estimations
 - MoF for Indonesia
 - CRISP for rest of SE Asia, if updates are methodological consistent

Criteria	CCI	CRISP	MoF
Scientific soundness	+	+	-/+
Geographical coverage	+	+	-/+
Spatial resolution	-	-/+	+
Temporal resolution	+	-	+
LULC class definition	-	+	+
Total	+1	+2	+3

Recommendations

- What would be needed for improvement
 - Consistency in class definitions and methodology for LULC mapping
 - Class definition focused on PO industry
 - Combination and referencing with other data (forest loss from GFW, fire data, ground truth)
 - Use of new-generation data sources (Landsat 8, Sentinel-1 radar, Sentinel-2, Planet, LiDAR)

Variability in LULC & GHG estimations, 67th LCA Discussion Forum

Questions?

Variability in LULC & GHG estimations, 67th LCA Discussion Forum