67th LCA Discussion Forum

Recent developments in indirect Land-Use Change (iLUC) modelling land use changes

DISCUSSION FORUM ON LIFE CYCLE ASSESSMENT

Jannick Schmidt & Michele De Rosa

3rd November 2017

2.-0 LCA consultants Rendsburggade 14, room 4.315B 9000 Aalborg, Denmark www.lca-net.com Michele.derosa@lca-net.com

Background

*IPCC (2014), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. https://www.ipcc.ch/pdf/assessmentreport/ar5/syr/AR5_SYR_FINAL_All_Topics.pdf

- 11% of global GHG emissions from LUC*
- Why do we have land use changes?
 - Because of increased demand for land
 - A change in demand for land ⇒ land-use changes
- Challenge
 - Ascribing the land use changes to its drivers
 - What is the role of energy/food/fibers?

Direct and indirect Land-Use Changes

Land for displaced crops?

The model in five bullets

- 1. Land use changes are **caused** by the **demand** for land
- 2. There is a **market** for land i.e. for land's **capacity for growing biomass**
- 3. The market for land is **global**:
 - crops can be grown in different regions
 - biomasses are substitutable and are traded on the global market
- 4. Different markets for land can be distinguished: arable, forest, range
- 5. Change in demand for land cause (and/or):
 - Transformation of land
 - Intensification of land already in use
 - Crop displacement / reduced consumption

4

Methods

- iLUC = Transformation & Intensification

Methods

- iLUC = Transformation & Intensification

							Output		Flow	Unit	
				Land market activity			Wheat		7,296	kg	\vdash
				Output	Flow	Unit	Inputs f	rom technoesphere			
Land use changes			_	Land	Σ (a ₁ :a ₃)	ha*year eq.	> Land		1.08	ha*year eq.	1
Output	Flow	Unit		Inputs from technosphe	ere		Diesel f	or traction	3,306	MJ	
Transformation	a 1	ha*year eq.		Transformation	a 1	ha*year eq.	N-Fertil	iser, as N	198	kg	
Ressource inputs from nature				Intensification	a ₂	ha*year eq.	P-Fertili	iser, as P ₂ O ₅	46	kg	
Transformation from	b ₁	ha		Changes in consumptio	n a ₃	ha*year eq.	K-Fertili	iser, as K ₂ O	84	kg	
Transformation to	b ₂	ha					Emissio	ns			
Emissions							CO ₂ fos	sil (diesel combustion)	245	kg	1
e.g. CO ₂	b ₃	kg					N ₂ O		4.15	kg	
			-				Resource	ces			
Intensification							CO ₂ bio	genic from air	11,370	kg	1
Output	Flow	Unit									1
Intensification	a ₂	ha*year eq.									
Inputs from technospher	е										
Diesel for traction	c ₁	MJ									
N-Fertiliser, as N	C ₂	kg									
Emissions											
e.g. N ₂ O, CO ₂	C ₃	kg	1								
		Not inc	luded								
Social effects											
Output	Flow	Unit	1								
Changes in consumption	a ₃	ha*year eq.									
Inputs											
n.a.	-										
Emissions											

Wheat LCA activity (1 ha yr)

20 LCA consultants _____

-

n.a.

Global map of potential net primary production (NPP₀)

Haberl H., Erb, K.H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., Fischer-Kowalski, M. (2007). Quantifying and mapping the global human appropriation of net primary production in Earth's terrestrial ecosystem. Proceedings of the National Academy of Sciences of the USA. 104: 12942-12007. http://www.uni-klu.ac.at/socec/inhalt/1191.htm

New developments - Global model

Supply of land

Use of land

- Time-series for all crops, all countries of:
 - Area
 - Yield
 - Production
- 3 markets for land: Arable, forest, range

Output of the model (next slide...)

Examples of results (1/2) Raw milk and the impact of iLUC

Exiobase v3, hybrid version inclusive iLUC

CH4 N20 CO2 LUC

www.exiobase.eu

Examples of results (2/2) Cereal and the impact of iLUC

Exiobase v3, hybrid version inclusive iLUC

Per kg dry matter

Wheat, kg CO2e/kg

■Other ■N2O ■CO2 ■iLUC

www.exiobase.eu

Members of the iLUC crowdfunded project

- Aalborg University, Department of Planning and Development, AAU (plan.aau.dk)
- Aarhus University, Department of Agroecology Agricultural Systems and Sustainability (scitech
- Arla Foods (arla.com)
- Asplan Viak (asplanviak.no)
- Concito (concito.dk)
- CSIRO (csiro.au)
- DuPont Nutrition and Health (dupont.com)
- DONG Energy (dong.dk)
- ecoinvent (ecoinvent.org)
- Mahidol University, Department of Civil and Environmental Engineering (http://www.eg.mahidol
- IFP Energies nouvelles (http://www.ifpen.fr/)
- Miljögiraff (miljogiraff.se)
- National Agricultural Research Center, Japan (naro.affrc.go.jp)
- Niras (niras.dk)
- NSW Department of Primary Industries (http://www.dpi.nsw.gov.au/)
- PRé Consultants (https://www.pre-sustainability.com/)
- PT SMART (https://www.smart-tbk.com)
- Round Table on Sustainable Palm Oil, RSPO (rspo.org)
- Sustainability Consortium (sustainabilityconsortium.org)
- Swedish University of Agriculture Sciences, SLU (slu.se)
- TetraPak (tetrapak.com)
- Unilever (unilever.com)
- United Plantations Berhad (united plantations.com)
- University of Copenhagen, The Faculty of Life Sciences, LIFE (life.ku.dk)

More info at: https://lca-net.com/clubs/iluc/

Schmidt J, Weidema B P, Brandão M (2015). *A framework for modelling indirect land use changes in life cycle assessment*. Journal of Cleaner Production 99:230-238

Examples of application

- Vegetable oils (palm, rapeseed, sunflower, peanut, soybean)
- Milk (Germany, Denmark, Sweden and United Kingdom)
- Chicken
- Specialty food ingredients
- Canteens (eco-labelled and conventional)
- Nature conservation in Kalimantan
- Global food consumption
- Biofuels (liquid and solid)
- Electricity models
- Structural timber
- Aggregates
- Buildings
- Apparels
- Corporate footprints for large, multinational companies, e.g. Arla Foods, Novo Nordisk, Nordic Alcohol Monopoly, and many others
- Danish consumption footprint
- Municipal level production and consumption footprint
- Global input-output table (the model is integrated in a special version of Exiobase v₃)
- And many more...

All examples can be accessed here:

https://lca-net.com/projects/show/indirect-land-use-change-model-iluc/

Thank you for your attention

Michele De Rosa

michele.derosa@lca-net.com
https://lca-net.com/clubs/iluc/

Occupation and transformation

- Accelerated deforestation

Effect of occupation (1 ha yr)

