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Source: Chaofeng Liu,Zachary G. Neale,Guozhong Cao: Understanding
electrochemical potentials of cathode materials in rechargeable batteries.
Materials Today, Elsevier, March 2016
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Present Battery Systems

Wh/I

Whikg




Future Battery Systems
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[Source: European Energy Storage Technology Development Roadmap Towards 2030 - Roadmap 2013]




BUT
Success will depends on several factors
(not only on energy und power density)

Costs (production costs, LCC) — Resource availability
Cycle lifetime

Calendric lifetime

Robustness

Resistance (energy losses)/ Self Discharge

Safety

Application specific needs

Recyclability
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Energy Transition
Need for Energy Storage

[IEA, “Technology roadmap: Smart Grids, 2011]
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Potential required storage capacity, short-
mid duration (4<x<5 h per day) until 2050

Quelle: Baumann 2018

s



Potential required storage capacity, mid
duration (8<x<10 h per day) until 2050

Quelle: Baumann 2018

e



But which Flex Option for the Grid?
Only batteries?

® Extension of transmission grid
® Sector coupling (Heat, Electricity, Mobility)

® Load management
o ...

 (Synthetic fuels (Power to gas (H2, etc.) — Fuel cells))
d (CAES storage)

A (Pumped hydro storage)

4 (Flywheels), ...
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LCA for Energy storage systems
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Before analyze Post Li- System
Understand the present Li-Systems

Many available studies, but few original LCI datasources, often quite old

Covering 5 different LIB

chemistries: O O
LFP-LTO

LFP-C —

LMO-C

NCM-C —
NCA-C -

Assumptions in many

case more important

for LCA results, than

battery chemistries itself [Peters et al. 2017)

Social LCA not found in literature
Own investigation: Zimmermann et al. 2015-SETAC
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Before analyze Post Li- System
Understand the present Li-Systems

Many available studies, but few original LCI datasources, often quite old

Covering 5 different LIB

chemistries: O
-

LFP-LTO
LFP-C —
LMO-C

NCM-C —
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Present Batteries for stationary application
Four application cases:

- ETS
Electric time shift (ETS)/, “Arbitrage”
Energy/Power = 4

- PVSC
Increase of photovoltaics self-consumption
Energy/Power = 3,2

- PR
Primary regulation
Energy/Power = 1

* RS
Renewables support
Energy/Power = 10
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Considered batteries

LFP lithium-iron-phosphate with graphite anode (LIB chemistry)
* LTO lithium-iron-phosphate with lithium-titanate anode (LIB chemistry)

« NCM lithium-nickel-cobalt-manganese-oxide with graphite anode (LIB

chemistry)
* NCA lithium-nickel-cobalt-aluminum-oxide with graphite anode (LIB)
« LMO lithium-manganese-oxide with graphite anode (LIB chemistry)
* NaNiCl sodium-nickel-chloride battery
* VRFB vanadium redox flow battery
 VRLA valve regulated lead acid
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Costs




LCC for batteries —

stationary application
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O Replacement cost O Initial Investment cost

O O&M (incl. Electricity)

[Baumann et al. 2017]




Sensitivity Analysis
Costs

A)
operation conditions including

number of cycles and charging
time per cycle

B)
Influence of efficiency and
purchased electricity.




GWP




CO2-Footprint (GWP)

[Baumann et al. 2017]
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Sensitivity analysis
CO2-Footprint

A)
Variation of efficiency and total
stored energy per year

B)
battery production vs.
charged electricity







Emergent Battery Technologies o
for stationary applications

Advantages of Sodium batteries:
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*» Based on cheap and good available e o e ol
elements and raw materials e
¢ Technical performance seems to
be very promising in this early stage
¢ Can be produced (on industrial level)
very similar to Li-lon batteries
¢ Hard carbons can be produced from
organic waste




LCA Sodium Battery

weight%, Na-battery

GWP = global warming potential,

FDP = fossil depletion potential,

MEP = marine eutrophication potential
FEP = freshwater eutrophication potential
HTP = human toxicity potential

TAP = terrestrial acidification potential

LFP—-C: 2960 cycles; LFP-LTO: 13 850 cycles;

LMO-C: 1070 cycles; NCA—C: 2200 cycles
NCM-C: 1650 cycles
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*» Use of BatPaC, production costs
» Black box

b Heat

Major results: e ror j.m &: o

[Peters et al. 2016]
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o Major SaVing due to Boo W Altmetric 136 More detail »
exchange of Cu-Foil perspective
by Al-Foil A cost anq resource analysis of sodium-
ion batteries
as current collector -

Christoph Vaalma, Daniel Buchholz m, Marcel Weil & Stefano Passerini

Nature Reviews Materials 3, Published: 13 March 2018
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Sodium-ion battery electrode materials

Operation voltages versus specific capacities of sodium-ion battery electrode materials

Source: Choi, J. W. & Aurbach, D. (2016) Promise and reality of post-lithium-ion batteries
with high energy densities. Nat. Rev. Mater. doi:10.1038/natrevmats.2016.13
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Stationary “Saltwater Battery”
Aqueous hybrid ion battery (AHIB)

Advantages

* Low investment costs (~ Li-lon) Picture: C2C Centre
* Very high cycle life

« Minimal degradation

 Little thermal management

« Environmental friendly materials

 Non-Toxic

* Neither flammable nor explosive Picture: Aquion Energy.




“Saltwater Battery”
Aqueous hybrid ion battery (AHIB)

AQUION

 Founded by Dr. Jay Whitacre

« Won MIT Price Picture: C2C Centre
* Investor: Bill Gates, ...

* Cradle to Cradle Certified™

Unfortunately
« Bankrupt March 2017
« Sold to “China”

« Company deconstructed

Picture: Aquion Energy.

* Production in China?
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LCA

Comparison of AHIB with LIB per kg (left) and per kWh of storage capacity (right)

Relative impacts associated with providing 1 kWh of stored electricity
from a residential PV system over the lifetime of each battery
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Stationary Applications
Vanadium Redox Flow Battery

Example: VRF-Battery Pfinztal
« 20 MWh capacity

« 2MW power
« ©650.000 L electrolyte

ICT Fraunhofer, Pfinztal

Pictures: BNN, KA-News, SWR
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Stationary Applications
Vanadium Redox Flow Battery

System Analysis perspective:
B Several techno-economic assessments of VRFB exists

® Only one simplified, outdated LCA available

» C. J. Rydh, J. Power Sources, 1999.

® Many publications which consider environmental issues
refer to this outdated LCA

® Urged need for updated, reliable LCA for VRFB

» Paper submitted to Energy & Environmental Science
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Environmental assessment of vanadium redox flow batteries
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The relevance of the end-of-life stage for the environmental impact of batteries
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Announcement

Workshop und Expertenforum
"Recycling aktueller und

zukunftiger Batteriespeichertechnologien,,
6. Juni 2018
ITAS/HIU, Karlsruhe

https://stage.itas.kit.edu/veranstaltungen.php

Open PhD Position

Life Cycle Analysis of high temperature
superconductors for future grid
applications

ITAS/ITEP Karlsruhe

Picture: oxolutia

.






Thank You

Helmholtz Institute Ulm for
Electrochemical Energy Storage
Albert Einstein Allee 11, Ulm, Germany
http://www.hiu-batteries.de

Karlsruhe
Ulm

Institute for Technology Analysis and
System Analysis

Karlstral’e 11, Karlsruhe, Germany
http://Iwww.itas.kit.edu/







ReMix-Model (DLR) — ES 2050

Picture: DLR - Forschung-Energiespeicher
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Conference paper (Scopus) Poster

Eingeladener Vortrag




