and a strange an

Economic and environmental assessment of different battery technologies for different grid network applications

Prof. Dr. Tobias Schmidt, Energy Politics Group, ETH Zurich; 68th LCA Discussion Forum, April 15, 2018 Work with: Martin Beuse^a, Zhang Xiaojin^b, Bjarne Steffen^a, Simon F. Schneider^{b,c}, Alejandro Pena-Bello^d, Christian Bauer^b, David Parra^d

^aEnergy Politics Group, ETH Zurich, ^bLaboratory for Energy Systems Analysis, Paul Scherrer Institute, ^cElectrochemistry Laboratory, Paul Scherrer Institute, ^d Energy Efficiency Group, University of Geneva

EHzürich

To which extent can stationary battery systems support the transition to a low-cost, decarbonized electricity sector?

- Stationary batteries as potential technological lever enabling high shares of intermittent RE
- But the *additional* use of batteries leads to *additional* emissions and cost
- There might be **potential trade-offs** between emissions and cost dimensions (e.g., between technologies)
- Very few studies have analyzed life-cycle emissions (LCE) and cost (LCC) consistently
- They analyze the cost of *stored* electricity, but we are interested in the *additional* LCE and LCC that stem from *storing* electricity in a battery storage system
- Effect of **geography** on LCE and LCC is also hardly analyzed
- Comparisons thus far rather arbitrary

RQ: How do the additional LCE and LCC of leading battery technologies compare that are caused by storing electricity in different grid applications and geographies?

EHzürich

We perform a consistent assessment of 6 battery technologies in 5 different applications and three geographies

• Germany (in between)

ETH zürich

Results 1: Life-cycle emissions (LCE) and cost (LCC) by battery technology and application

- Major betweenapplication differences
- Major betweencountry differences regarding LCE
- Mostly betweentechnology differences regarding LCC

Results 1: Contributions of the manufacturing- and use-phase

LFP

LCC

[EUR Cent /kWh]

21

16

58

96%

LCE

[kg CO₂e/kWh]

0.21 77%

Pre-use phase (incl. Integration, logistics, replacement)

Wholesale Arbitrage (WA)

(

0.16 59% LTO 97% 25 0.20 60% 96% 20 NCA 0.17 74% 95% NMC 0.59 58% VLA 98% 0.59 92% 84% 22 VRF

	[kg	LCE CO ₂ e/kWh]	LCC [EUR Cent /kWh]			[kg		
	0.15	68%	LFP	96%	21		0.06	
	0.13	52%	LTO	97%	25		0.08	
	0.16	51%	NCA	96%	20		0.09	
	0.12	65%	NMC	95%	16		0.05	
	0.47	53%	VLA	98%	58		0.28	
	0.40	87%	VRF	84%	22		0.10	Ę

[kg C	LCE O ₂ e/kWh]	LCC [EUR Cent /kWh]		
0.06	77%	LFP	95%	21
0.08	89%	LTO	97%	25
0.09	88%	NCA	96%	20
0.05	79%	NMC	95%	16
0.28	89%	VLA	97%	58
0.10 5	0%	VRF	82%	22

Use Phase

Results 3: Contribution of manufacturing-related emissions to LCE

Transport

management systems

Energy-, Battery- and Batter thermal-

Power conditioning system

Energy consumption

Anode

| 7

Results 4: Comparison of carbon and life-cycle cost of storing electricity in battery systems

Discussion: What are levers to further improvements be achieved along both dimension?

| ₉

Thank you for your attention!

For more information please see <u>www.epg.ethz.ch</u>

Table 1 Common specification of battery applications which are assumed for our LCE and LCC analyses.

Abbr.	Application	Site	Power deliver ed per cycle [kW]	Energy delivere d per cycle [kWh]	Energy-to- Power Ratio	Usage [#cycles p.a.]	Energy delivered [kWh p.a.]
WA	Wholesale Arbitrage	Generation/ Grid site	10,000	60,000	6	365	21,900,000
AF	Area & Freq. Regulation	Generation/ Grid site	10,000	5,000	0.5	176	880,000
TD	T&D Upgrade Deferral	Grid site	10,000	50,000	5	250	12,500,000
PS	Demand Peak Shaving	C&I sites	125	250	2	104	26,071
SC	Increase of Self- Consumption	Residential end-consumer	2.5	5	2	250	1,250

Ι

Abbr.	Item/ Application	Units	Poland	Germany	Switzerland
W/A	Wholesale	kg CO ₂ e/kWh	1.043	0.673	0.094
WA	Arbitrage	EUR cent/kWh	3	2.9	3.8
AE	Area & Freq.	kg CO2e/kWh	1.043	0.673	0.094
АГ	Regulation	EUR cent/kWh	3	2.9	3.8
TD	T&D Upgrade	kg CO2e/kWh	1.043	0.673	0.094
ID	Deferral	EUR cent/kWh	3	2.9	3.8
DC	Demand Peak	kg CO2e/kWh	1.043	0.673	0.094
FS	Shaving	EUR cent/kWh	7.6	7.9	12.3
50	Increase of Self-	kg CO ₂ e/kWh	0.091	0.101	0.095
sc	Consumption	EUR cent/kWh	11	12	15

02.03