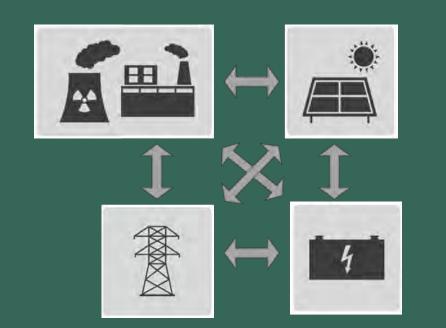
ENVIRONMENTAL IMPACTS OF THE INTEGRATION OF PHOTOVOLTAICS INTO THE SWISS LOW VOLTAGE ELECTRICITY GRID


LIFE CYCLE ASSESSMENT OF PRODUCTION, DISTRIBUTION AND STORAGE OF SOLAR POWER

VALENTIN STAHEL VALENTIN.STAHEL@ENASTRA.CH

DISCUSSION FORUM 68 — LCA OF KEY TECHNOLOGIES FOR FUTURE ELECTRICITY SUPPLY 16.APRIL 2018

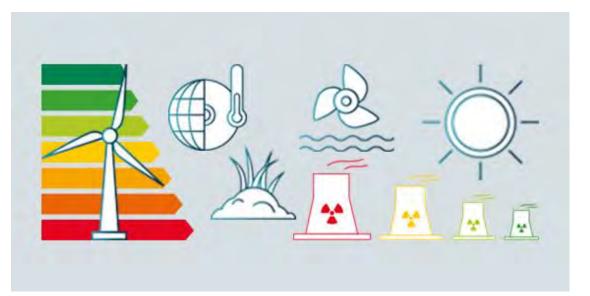
Life Sciences und Facility Management

zh aw

Life Sciences und Facility Management

CONTENT

Introduction/ Goal Investigation Area Electricity Production / Consumption Greenhouse Gas Emission Further Impact Assessments


Conclusion

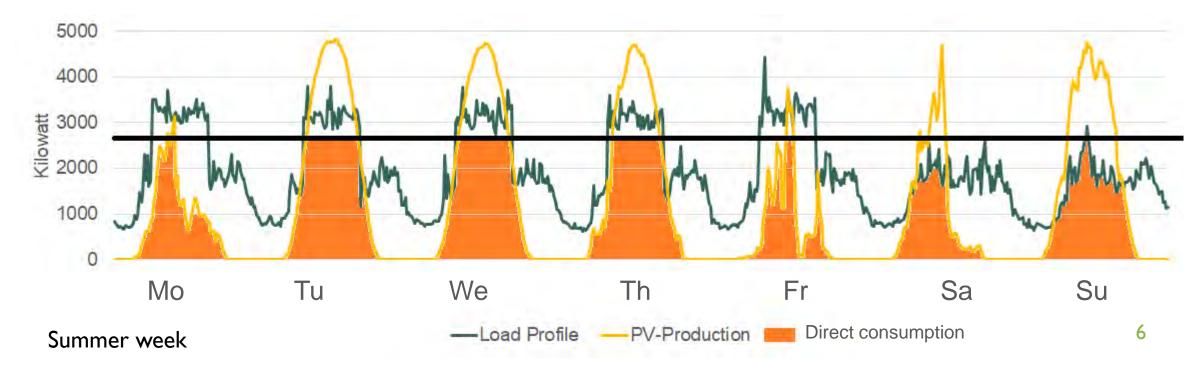
INTRODUCTION

- Swiss Energy Strategy 2050
- Promoting renewable energies
- Photovoltaic electricity in the production mix
 2015 today <1%
 2050 goal 20%
- Consequence: grid problems

Life Sciences und Facility Management

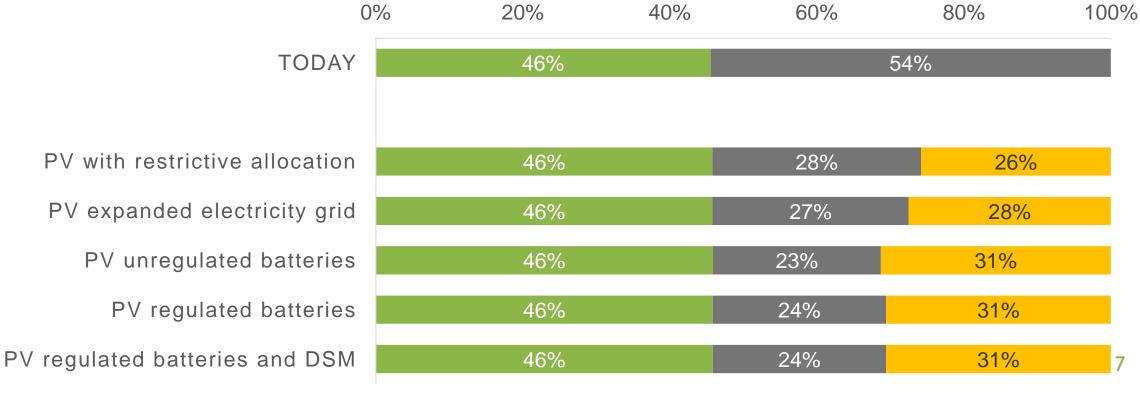
- Environmental impacts of the integration of the photovoltaic potential on rooftops into the Swiss low voltage grid
- If PV power rises above 50%, this can cause overload or overvoltage of grids
- Technical Solutions:
 - restrictive allocation
 - expansion of the electricity grid
 - lithium-ion battery
 - demand side management (DSM)

INVESTIGATION AREA



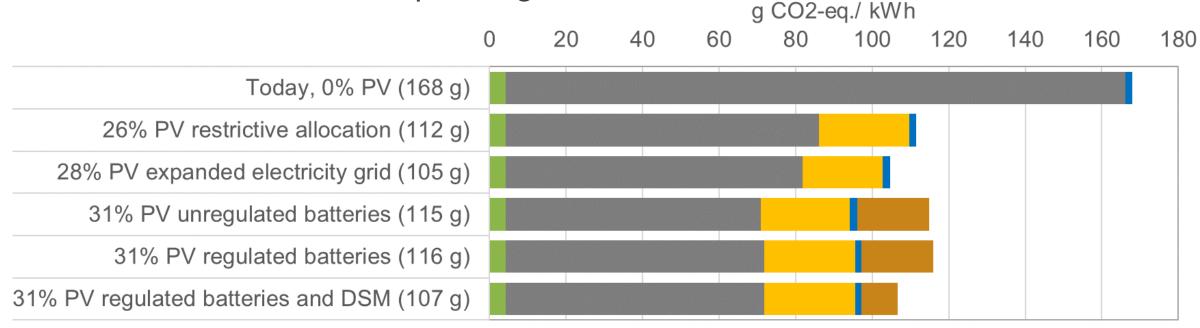
Life Sciences und Facility Management

- A medium size low voltage electricity grid
 - PV potential: 6 MWpeak photovoltaic plant on rooftops (max. lead peak 5.3MW)
 - 44km: low voltage electricity grid
 - 950 buildings
 - l'900 customers
 - 19 GWh energy consumption incl. losses (industry making up 25%)


- PV-Production Load = Direct consumption -> at least 75%/year
- If performance rises over the 50%-line, action is required (switch off PV-plants, battery, export in higher network level, DSM)

ELECTRICITY CONSUMPTION

Technical solution influences the electricity consumption mix


Hydropower Fossil and nuclear fuel Photovoltaics

GREENHOUSE GAS EMISSIONS

Battery

- For all scenarios the GHG emissions decrease significantly with PV-plants in comparison to todays electricity mix
- Lowest emissions: PV with expanded grid

Electricity grid

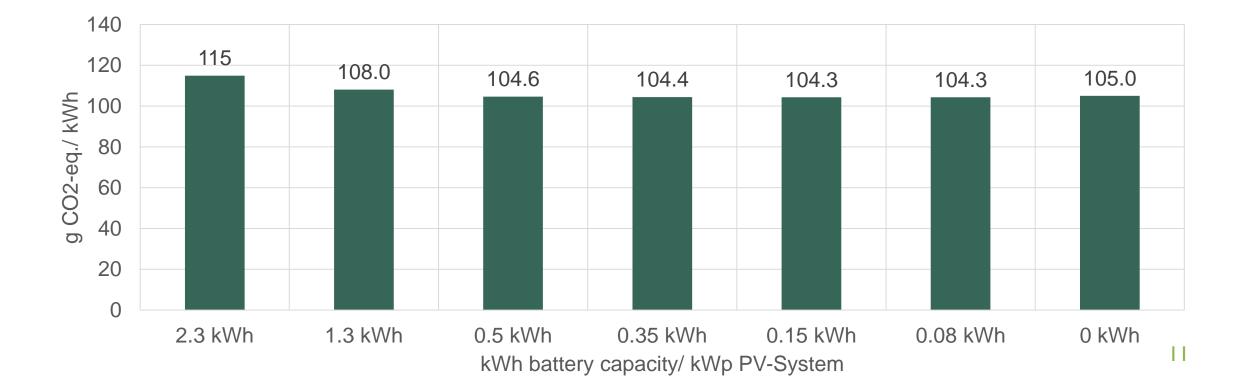
GREENHOUSE GAS SAVINGS

- PV with grid expansion causes comparably little emissions
- PV with (unregulated or regulated) battery increases the fossil and nuclear fuel savings
 0 10
 0 10
 90 100

Investment photovoltaics

Investment electricity grid

FURTHER IMPACT ASSESSMENTS


- Decrease of environmental impact for all technical alternatives according to most indicators compared to todays electricity mix
- Only particulate matter & freshwater eutrophication is higher
 -> due to PV-module and battery production in Asia with 80% fossil energy

/kWh	Cumulative Energy Demand (CED)	Ozone depletion	Human toxicity, cancer effects	Particulate matter	Freshwater eutrophication
	[MJ]	[kg CFC-11eq]	[CTUh]	[kg PM2.5eq]	[CTUe]
Today	10.0	5.1E-08	1.9E-08	3.5E-05	2.5
26% PV without improvements	6.4	2.8E-08	1.4E-08	4.8E-05	4.1
28% PV expanded electricity grid	6.1	2.6E-08	1.3E-08	4.5E-05	3.9
31% PV unregulated batteries	5.8	2.3E-08	1.4E-08	6.9E-05	4.6
31% PV regulated batteries	5.9	2.4E-08	1.4E-08	6.8E-05	4.4
31% PV regulated batteries and DSM	5.8	2.4E-08	1.3E-08	5.7E-05	4.2

ECOLOGICAL MAXIMUM WITH BATTERIES

Life Sciences und Facility Management

CONCLUSION

Trade-off: Freshwater ecotoxicity and particulate matter increase in all scenarios, all other indicators decrease

- The ecological maximum for the examined low-voltage grid
 - + Maximum Photovoltaic Expansion
 - + Expansion of the Electricity Grid
 - +0-2 kWh net battery capacity per kWp of PV power (regulated or unregulated)

THANK YOU FOR YOUR ATTENTION!

Life Sciences und Facility Management

13