

# Learnings from a round robin test of assessing the environmental impacts of the be2226 office building

Livia Ramseier, Rolf Frischknecht, treeze Ltd.

Member countries of IEA EBC Annex 72

LCA Discussion Forum 71, 18. June 2019
Zurich, Switzerland



#### **Overview**



- Introduction and goal
- National / regional methods
- Construction material
- Electricity mixes
- Results
- Issues during assessment
- Conclusions

#### Introduction





archphoto, inc. © Baumschlager Eberle Architekten

- Exercise within the IEA EBC Annex 72
- Inventory data and BIM model established by TU Graz
- 22 institutions assessed the office building
- National / regional methods and databases were applied
- Focus: greenhouse gas emissions

#### Goal



- Present and "illustrate" national assessment methods on the basis of an identical building
- Analyse and compare methods, indicators and forms of presentation
- Identify major commonalities and discrepancies in view of developing harmonised methodology guidelines

### National / regional methods



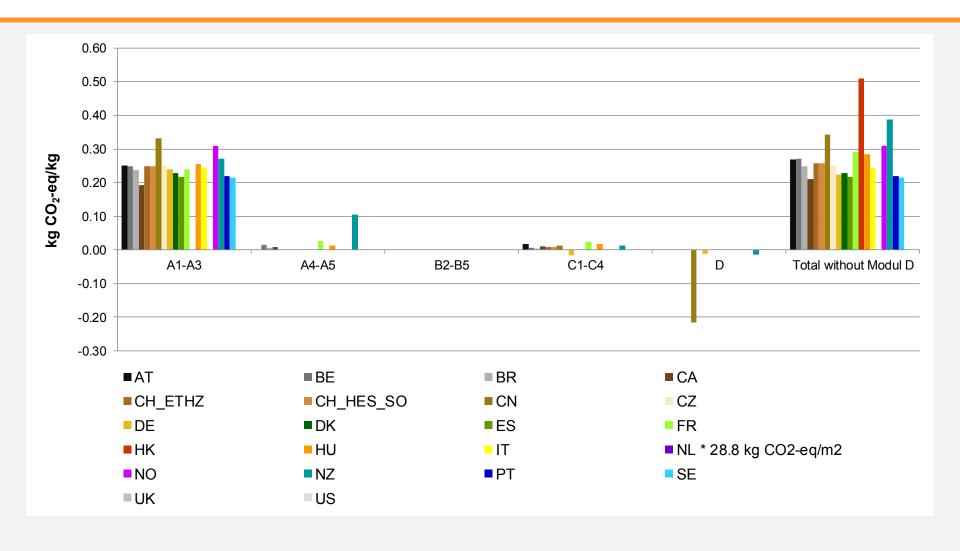


22 institutions assessed the office building be2226

### National / regional methods

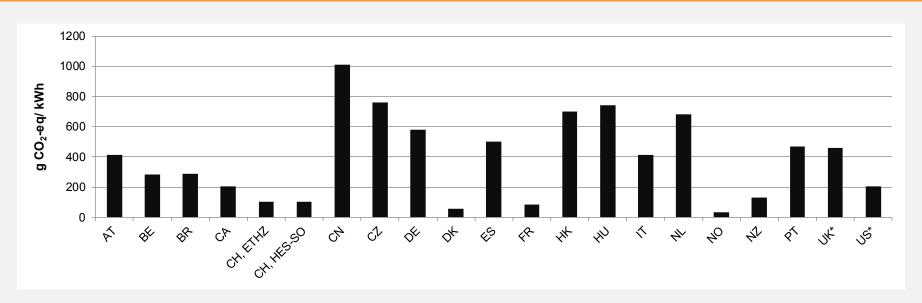


- reference study period:
  - 50 years: 15 countries
  - 60 years: 5 countries
  - 80 years: 1 country (Denmark)
- background data used
  - ecoinvent v2.1 3.5 (partly adapted to national context)
  - Country specific databases (e.g. KBOB, Ökobau.dat)
  - EPDs


## National / regional methods Life cycle stages



| Life evole | A4 A2 |
|------------|-------|
| Life cycle | A1-A3 |
| stages     |       |
| AT         | X     |
| BE         | X     |
| BR         | X     |
| CA         | X     |
| CH, ETHZ   | X     |
| CH, HES-SO | X     |
| CN         | X     |
| CZ         | X     |
| DE         | X     |
| DK         | X     |
| ES         | X     |
| FR         | X     |
| HK         | X     |
| HU         | X     |
| IT         | X     |
|            |       |
| NL         | X     |
| NO         | X     |
| NZ         | X     |
| PT         | X     |
| SE         | X     |
| UK         | X     |
| US         | X     |

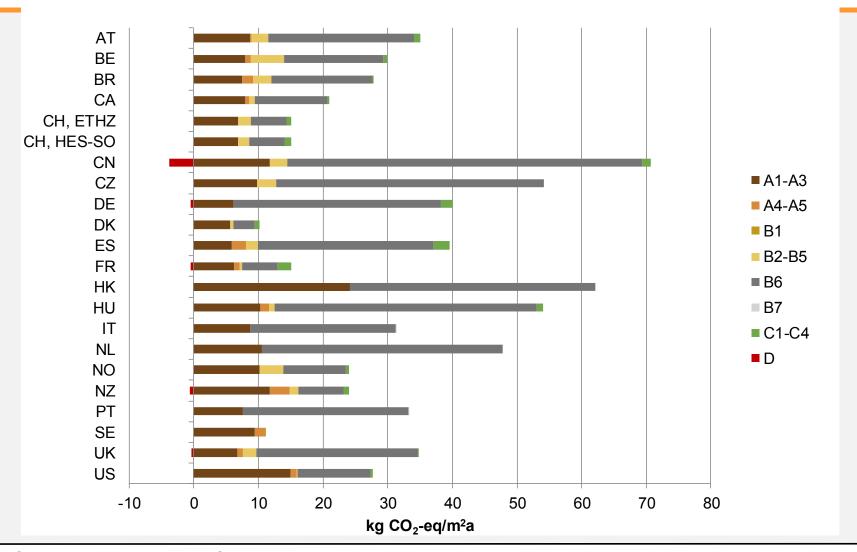

## Construction material – Brick





### **Electricity mixes**






- GHG emissions of electricity mixes differ by factor 30
- Reflect real existing differences in national electricity supply
- Denmark is the only country reporting a future average mix based on renewable energies only

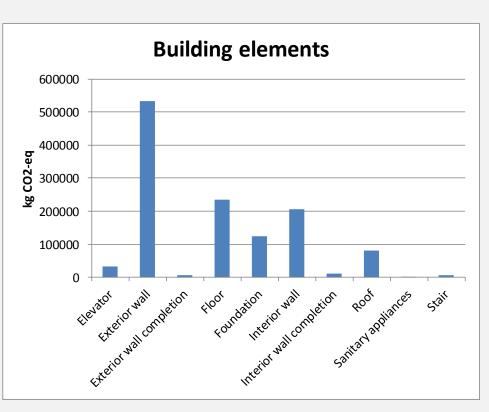
### Results -

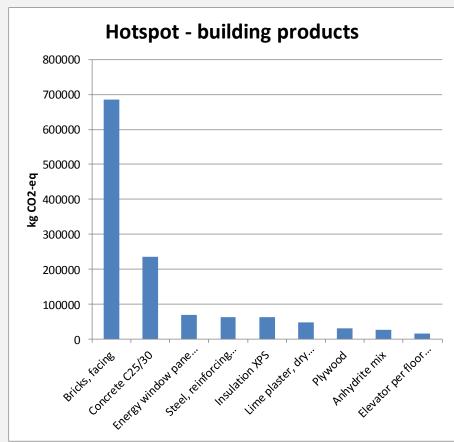


### Greenhouse gas emissions (annualised)



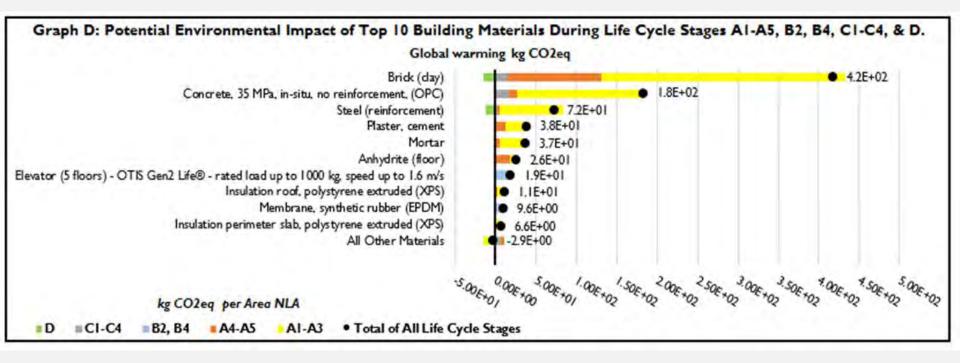
# Results – EBC Greenhouse gas emissions (annualised)


- A1-A3 varies by factor 2.6 (excl. Hong-Kong)
  - difference in building life time
  - CO<sub>2</sub>-intensity of bricks and concrete
- A4, A5 addressed by 13 countries
  - important with high import distances (NZ)
- B2-B5 highly variable but minor contribution
  - missing elements (e.g. electrical system)
  - different life times of materials (and thus # replacements)


# Results – EBC Greenhouse gas emissions (annualised)

- C1-C4 minor contribution
  - relatively small share of plastics/insulation material
- D: hardly visible on building level
  - largest contribution from recycling steel (reinforcing) and bricks, CN assessment

## Results – Denmark: detailed assessment








## Results – E New Zealand: detailed assessment





### Issues during assessment



- Missing life cycle inventory data for specific materials (e.g. vacuum insulation panels)
- Different aggregation stages in the information provided and the data available (e.g. reinforced concrete)
- Differences in the units of building data and the available LCA (e.g. pieces vs. m<sup>3</sup> of stairs)

#### **Conclusion**



- Largest contributions from production (A1-A3) and operation (B6)
- Most influencing factors
  - GHG intensity of electricity mix
  - GHG intensity of main construction materials
  - reference study period
- Differences in modelling and methodology are less important
- Optimal (low) GHG emissions building solutions depend on national context
- Outlook: Assessment of Chinese high-rise residential building

## **Acknowledgement Authors national**



| Country | Authors                        | Institution                                                                                   |  |
|---------|--------------------------------|-----------------------------------------------------------------------------------------------|--|
| AT      | A Passer, M Röck               | Graz University of Technology, Austria                                                        |  |
| BE      | D Trigaux                      | EnergyVille / KU Leuven / VITO, Belgium                                                       |  |
| BR      | V Gomes                        | University of Campinas, Brazil                                                                |  |
| CA      | J Martel                       | Groupe Ageco, Canada                                                                          |  |
| CA      | C Ouellet-Plamondon            | École de technologie supérieure, Canada                                                       |  |
| CH      | G Habert, A Hollberg           | ETH Zurich, Switzerland                                                                       |  |
| CH      | S Lasvaux                      | HES-SO, IGT-LESBAT, Switzerland                                                               |  |
| CN      | W Yang                         | Tianjin University, China                                                                     |  |
| CZ      | A Lupíšek, P Ryklová           | Czech Technical University in Prague, University Centre for Energy Efficient Buildings        |  |
| DE      | T Lützkendorf, M Balouktsi     | Karlsruhe Institute of Technology, Germany                                                    |  |
| DE      | H König                        | Ascona, Germany                                                                               |  |
|         | H Birgisdottir, F Nygaard      |                                                                                               |  |
| DK      | Rasmussen                      | Aalborg University, Denmark                                                                   |  |
|         | A García Martínez, C Llatas, B |                                                                                               |  |
| ES      | Soust Verdaguer                | Universidad de Sevilla, Spain                                                                 |  |
| FR      | B Peuportier                   | MINES ParisTech, France                                                                       |  |
| HK      | C. K. Chau                     | The Hong Kong Polytechnic University, Hong-Kong                                               |  |
| HU      | Z Szalay                       | Budapest University of Technology and Economics, Hungary                                      |  |
| ΙΤ      | S Longo, M Cellura             | University of Palermo, Italy                                                                  |  |
| NL      | E Alsema                       | W/E Consultants, Netherlands                                                                  |  |
| NO      | L Huang, R A Bohne             | NTNU – Norwegian University of Science and Technology, Norway                                 |  |
| NZ      | B Berg, D Dowdell              | BRANZ, New Zealand                                                                            |  |
| PT      | Ricardo Mateus, Luís Bragança  | University of Minho, Portugal                                                                 |  |
| SE      | N Francart                     | KTH Royal Institute of Technology, Sweden                                                     |  |
| -UK     | F Pomponi                      | Resource Efficient Built Environment Lab (REBEL), Edinburgh Napier University, United Kingdom |  |
| EUS     | M Dixit                        | Texas A&M University, USA                                                                     |  |

#### **IEA EBC Annex 72**



- Website <a href="http://annex72.iea-ebc.org/">http://annex72.iea-ebc.org/</a>
- LinkedIn www.linkedin.com/groups/13604349
- ResearchGate
   https://www.researchgate.net/project/IEA-EBC-Annex-72-Assessing-life-cycle-related-environmental-impacts-caused-by-buildings