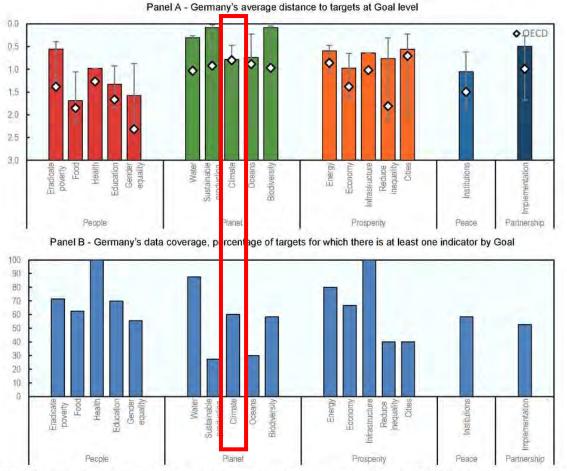
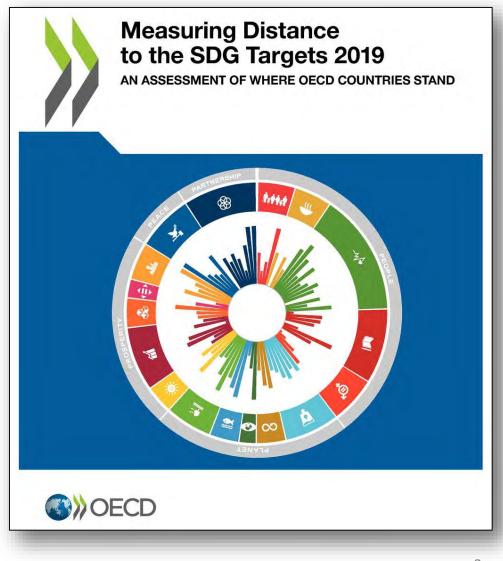
Environmental Benchmarks for buildings and infrastructures: Needs, challenges and solutions, DF71, June 18, 2019, Zurich

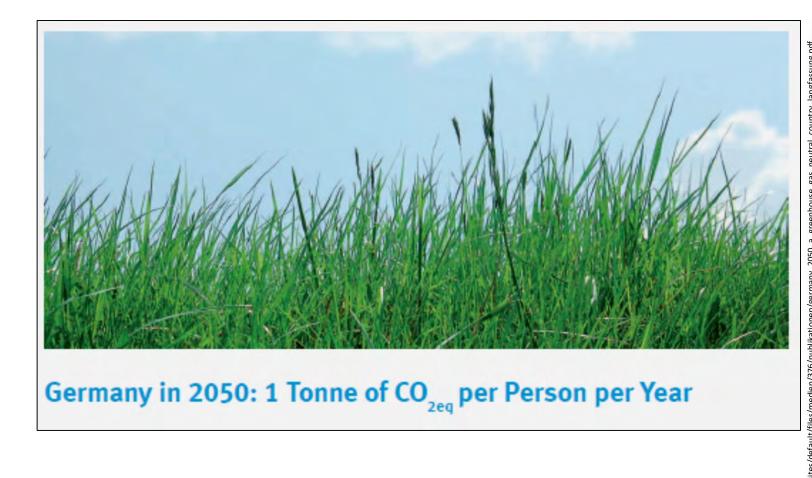
GHG budget for buildings & performance levels for sustainability assessment – the situation in Germany

Thomas Lützkendorf Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany thomas.luetzkendorf@kit.edu

Germany – overall situation (budget for building sector)

2


Figure 2.22. Germany's distance from targets and data coverage, by goal

Note: Panel A shows the average distance the country needs to travel to reach each SDG. Distances are measured in standardised units (see Chapter 3 for details) with 0 indicating that the level for 2030 has already been attained: and 3 is the distance most OECD countries have already travelled. Bars show the average country performance against all targets under the relevant Goal for which data are available, and diamonds show the OECD average. Whiskers show uncertainties due to missing data, ranging from assuming that missing indicators are all 3 standardised distances from the 2030 target level to assuming that they are already at the target level. Panel B shows the share of targets covered by at least one indicator out of the 169 targets of the 2030 Agenda, according to the 17 goals and 5Ps.

Source: See www.oecd.org/sdd/OECD-Measuring-Distance-to-SDGs-Targets-Metadata.pdf for detailed metadata.

Germany's distance to target

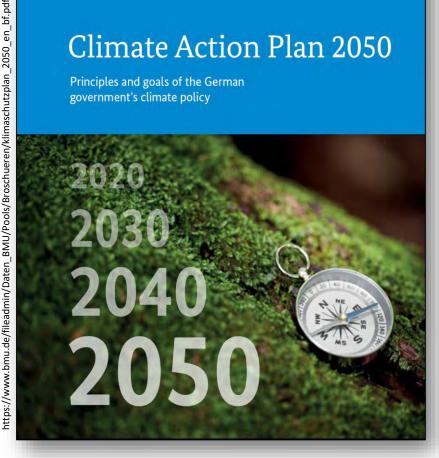
A greenhouse gas-neutral Germany with **per-capita emissions of just one tonne of CO2eq in 2050** is technically achievable and implies a reduction of emissions by 95 % compared to 1990.

BACKGROUND PAPER // OCTOBER 2013 Germany 2050

a greenhouse gas-neutral Country

Umwelt 📦 Bundesamt

Area of action	1990 (in million tonnes of CO ₂ equivalent)	2014 (in million tonnes of CO ₂ equivalent)	2030 (in million tonnes of CO ₂ equivalent)	2030 (reduction in % compared to 1990)
Energy sector	466	358	175 - 183	62 - 61 %
Buildings	209	119	70 - 72	67 - 66 %
Transport	163	160	95 - 98	42 - 40 %
Industry	283	181	140 - 143	51 - 49 %
Agriculture	88	72	58 - 61	34 - 31 %
Subtotal	1,209	890	538 - 557	56 - 54 %
Other	39	12	5	87 %
Total	1,248	902	543 - 562	56 - 55 %


Source: Climate Action Plan 2050 of the Federal Government

The **German government's Energy Concept** aims to lower the primary energy demand in the buildings sector by at least 80 percent compared with 2008 levels by 2050. If Germany is to achieve its **goal of making its building stock** virtually climate-neutral by 2050, it is crucial that the available potential for avoiding emissions be fully exploited over the next years and decades. In 2050 the entire residential building stock will need on average only just less than 40 kilowatt hours per square metre per year (kWh/m2a). For non-residential buildings this average target value, which is based on primary energy demand, is approximately 52 kWh/m2a. These values should be seen as targets and are averages for the entire building stock.

Federal Ministry for the Environment, Nature Conservation Building and Nuclear Safety

Climate Action Plan 2050

Principles and goals of the German government's climate policy

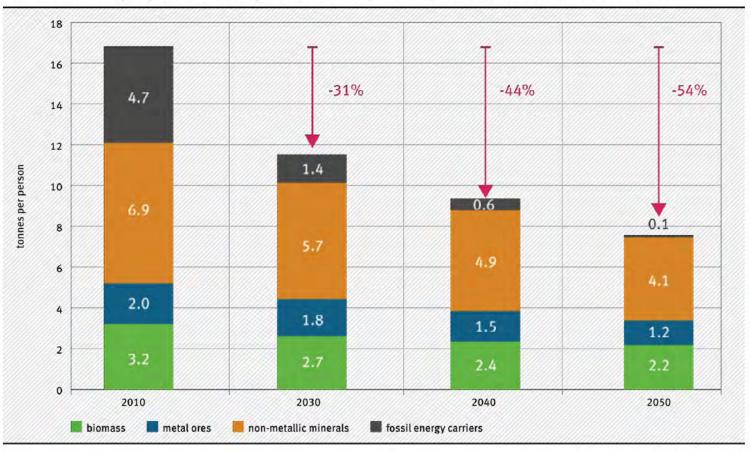
Greenhouse gas reduction according to the GreenEe scenario^{a)} by 2030 compared to the Federal Government's targets

	Cl	imate Action Pl	an		GreenEe scenario			
	2030 emis	sion target	Reduction a	gainst 1990		2030 emissions	Reduction against 1990 ^{b)}	
	From	То						
	Million	t CO₂eq	9	6		Million t CO₂eq	%	
Energy sector	175	183	62%	61%	Energy (without			
Industry	140	143	51%	49 %	transport)	330	66 %	
Buildings	70	72	67 %	66 %	and industry			
Transport	95	98	42%	40 %	Transport	109	34%	
Agriculture	58	61	34%	31%	Agriculture	51	35%	
Others	5	5	87%	87%	Waste	6	83%	
Overall total	543	562	56%	55%		496	60%	

a) Data without LULUCF and international aviation and maritime transport. b) The National Inventory Report 2016 v6 is the basis of the 1990 tigures as opposed to

the Climate Action Plan.

These values are averages for the entire building stock of residential buildings – just for operation!.


as	opposed to			
		Living area	Mio. t	kg GHG
	Residential buildings	in Mrd. m ²	GHG	/m²/a
	2015	3,8	87	23
4	2030	4,1	47	12

Source: BMUB 2016f and model calculation

Informal calculation !

A resource efficient pathway towards a greenhouse gas neutral Germany
-95% greenhouse gas emissions
until 2050 44 5 -60%
raw material use

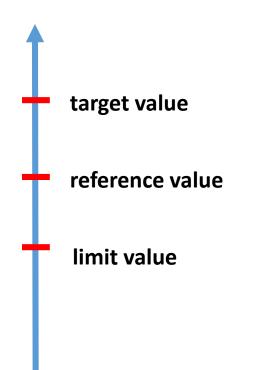
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/171220_uba_fachbrosch_rtd_bf_engl.pdf

Raw material use per person (RMC/cap), absolute and percentage change, in the GreenEe-Scenario

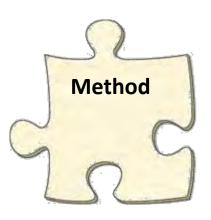
Source: own illustration of model calculation

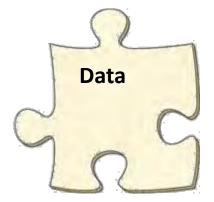
nttps://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/171220_uba_fachbrosch_rtd_bf_engl.pdf

Additional targets / budgets for raw material use / capita * year ?!


A resource efficient pathway towards a greenhouse gas neutral Germany .0 0 until 2050 -60 Umwelt 🗊 Bundesamt For our Environment

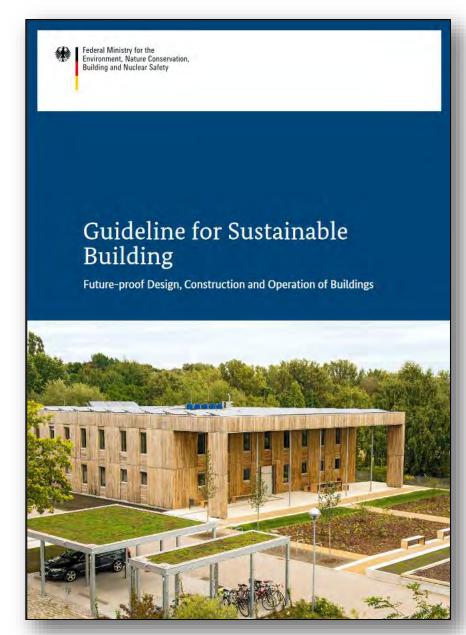
Benchmarks – the background


ISO/CD 21678

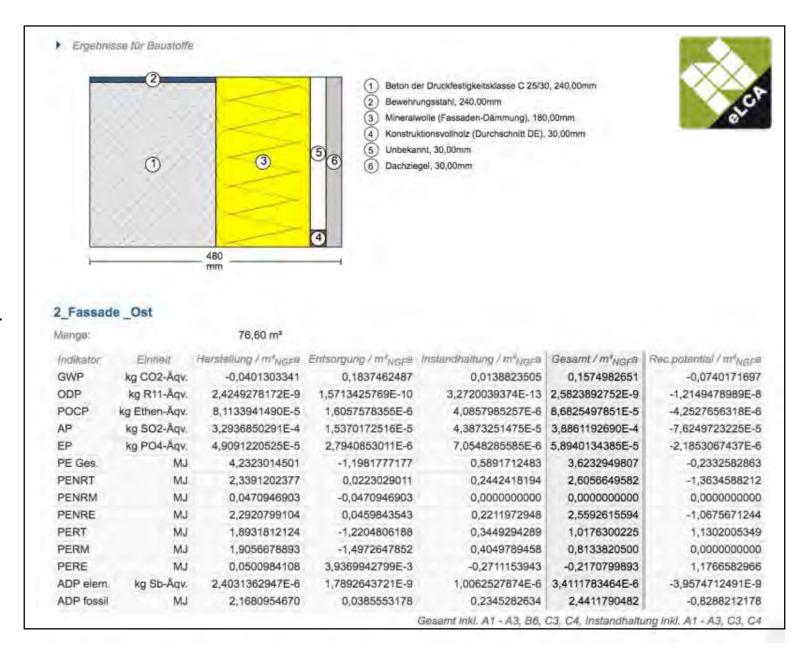

[Under development]

Sustainability in buildings and civil engineering works - Methodological principles for the development of benchmarks for sustainable buildings

The packgage approach



BNB - Sustainability assessment systems for public buildings (office buildings)


- ➤ Guideline
- > Assessment system (public available)
- Rules for target setting
- Rules for integration into design process
- Rules for documentation & data storage
- Data base (public available)
- Calculation tool (public available)
- Benchmarks
- Weighting factors for indicators
- > Web based product group information system
- Training programmes for assessors
- Demand in case of public buildings

l.	Ecological Quality			Sustainability Criteria	Percentage Share of overall Result Individual Categories	Factors of Relevance	Percentag of overal Main C Grou
				Ecological Quality	Categorita		22,
.1	Effects on Global and Local Environment			Effects on Global and Local Environment			4
			and the second	1.1 Global Warming Potential (GWP) 1.1.2 Ozone Depletion Potential (ODP)	3,375% 1,125%	3	-
				11.3 Photochemical Ozone Creation Potential (POCP)	1,125%	1	-
	Global Warming Potential	\cap -		1.1.4 Acidification Potential (AP)	1,125%	1	1
	Global Walling Potential			1.1.5 Eutrophication Potential (EP)	1,125%	1	
	·			1.1.6 Risks to the Local Environment	3,375%	3	1
10	One Delating Detection	0		1.1.7 Sustainable Logging / Wood	1,125%	1	
.1.2	Ozone Depletion Potential	0 -	→ E DE	Demand of Resources			4
		-		1.2.1 Primary Energy Demand Not Renewable (PE	3,375%	3	-
100				1.2.2 Total Primary Demand (PEtot) and Amount of PE_ 1.2.3 Fresh Water Demand and Quantity of Wastewater	2,250%	2	-
.1.3	Photochemical Ozone Creation Potential	<u>0</u> –		1.2.4 Demand of Space	2,250%	2	1
	Thotoenennen Ozone Orenton Fotentin			Economical Quality	2,20070		2
				Life Cycle Costs			1
14	Acidifaction Detential			2.1.1 Building-related Life Cycle Costs	13,500%	3	1
.1.4	Acidification Potential	0 -	• E DE	Performance			1
		-	-	2.2.1 Stability of Value	9,000%	2	
				Socio-Cultural and Functional Quality			2
.1.5	Eutrophication Potential	0 -		Health, Comfort and User Satisfaction			4
	Lutiopineutoni i otentua			3.1.1 Thermal Comfort in Winter	1,607%	2	
				3.1.2 Thermal Comfort In Summer	2,411%	3	-
	D.1			3.1.3 Indoor Air Quality 3.1.4 Acoustic Comfort	2,411% 0,804%	1	-
.1.6	Risks to the Local Environment			3.1.5 Visual Comfort	2,411%	3	-
				3.1.6 Influence of the User	1,607%	2	
				3.1.7 Building-related Outdoor Qualities	0,804%	1	12
.1.7	Sustainable Logging / Wood		ТР	3.1.8 Safety and Incident Risks	0,804%	4	1
.1./	Sustainable Logging / wood			Functionality			1
			Federal Ministry for the	Barrier-free Building	1,607%	2	
		and the second se	Environment, Nature Conservation, Building and Nuclear Safety	2 Space Efficiency	0,804%	1	- 10
.2	Demand of Resources			Capability of Conversion	1,607%	2	-
		2		Public Accessibility Bicycle Comfort	1,607%	2	-
	the second se			Ensuring Design Quality	0,004%		
.2.1	Primary Energy Demand Not Renewable (PEnre)	C I		Design and urban Quality	2,411%	1 3	1
	Timary Energy Demand Not Kenewable (T Enre)			Art in Architecture	0.804%	1	1
				nical Quality			-
00				Technical Execution			1
.2.2	Total Primary Demand (PE _{tot}) and Amount of PE _{re}	C I		Sound Insulation	5,625%	2	1
		· ·	Assessment System	Heat insulation and Protection against Condensate	5,625%	2	
				Cleaning and Maintenance	5,625%	2	
.2.3	Fresh Water Demand and Quantity of Wastewater		for Sustainable Building	Dismantling, Separation and Utilisation	5,625%	2	
.4.5	Tresh water Demand and Quantity of Wastewater		Administration Buildings	ess Quality			-
			Administration Buildings	Management and Design			4
	D 1 (C			Project Preparation	1,429%	3	-
.2.4	Demand of Space		A A A A A A A A A A A A A A A A A A A	Integrated Design	1,429%	3	-
				Sustainability Issues in Tender and Placing	0,952%	2	1
				Requirements for an Optimal Utilisation and Management	0,952%	2	1
• • • • / / · · · ·	an al-halting da an	and f		Building Construction			1
.ups://www	.nachhaltigesbauen.de/fileadmin/pdf/Systainable_Building/assessment_system_bnb	pui		Building Site / Building Process	0,952%	2	1
				Quality Assurance of the Building Construction	1,429%	3	
want life phase	Assessment method Verification management Time of documentation			Controlled Commissioning	1,429%	3	
T. I.F.				2			
Total life cycle	Linear assessment C Client PD Project development			Hon Profile			
Realisation	Guality level P (specialist) Planners DE Design			Location Profile			
				Risks at the Micro-Site	()+(2	
Utilisation	Checklists E External TP Tender and placing			Conditions at the Micro-Site	-	2	-
				Image and Character of Location and Quarter		2	-
Dismantling	Realisation			Public Transport Connections Vicinity to Use-Specific Services	-	3	-
	MU Hand-over and utilisation			Supply Lines / Site Development		2	1

Calculation tool

The online-tool for life cycle assessments 'eLCA' has been developed by Federal Institute for Research on Building, Urban Affairs and Spatial Development (Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR)) since September 2012. It can be used for LCAs for office and administration buildings. The assessments are based on the database for building materials 'Ökobau.dat' issued by the BBSR. In the database 'Ökobau.dat' ecological data about building materials and components as well as energy consumption for the operation of buildings are provided. The inputs can be evaluated in different variants of the same project and planning phases can be studied for their environmental effects according to the 'Rating System for Sustainable **Building**' (Bewertungssystem Nachhaltiges Bauen (BNB)), also issued by the Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR).

Database ÖKOBAUDAT

The ÖKOBAUDAT platform is provided as a standardized database for ecological evaluations of buildings by the Federal Ministry of the Interior, Building and Community. At the platform's core is the online database with life cycle assessment datasets on building materials, construction, transport, energy and disposal processes. With the help of life cycle assessment tools, such as eLCA provided by the BBSR, the entire life cycle of a building can be reconstructed with the ÖKOBAUDAT database. ÖKOBAUDAT is not designed for performing life cycle assessment of building products.

The datasets are subject to strict quality requirements and can be used in many different building assessment systems. The database system with its search and filter functions enables user-friendly online searches of the datasets. Data published in ÖKOBAUDAT are **publicly available at no charge**. The respective owner of the datasets remains responsible for the contents and values.

www.nachhaltigesbauen.de

More than 1,200 datasets for building products – EN 15804- and BNB-compliant

The constantly updated ÖKOBAUDAT (**current version 2019-III from 29.05.2019**) is the mandatory database for the Assessment System for Sustainable Building (Bewertungssystem Nachhaltiges Bauen, BNB). Currently more than 1,200 datasets are provided, and these have been in compliance with DIN EN 15804 since 2013. This means ÖKOBAUDAT is the first life cycle assessment database that completely complies with this standard.

ÖKOBAUDAT offers both generic datasets and specific environmental declaration datasets from diverse companies or associations. EPD datasets in ÖKOBAUDAT must fulfill further requirements beyond the scope of EN 15804 (see Principles for acceptance of LCA data in ÖKOBAUDAT). Before approval, the EPD programmes and data are checked for conformity with ÖKOBAUDAT requirements (\rightarrow Guidance for data providers).

Datasets in ÖKOBAUDAT are based on the background database GaBi. Besides, datasets based on ecoinvent background data are provided in 'additional datasets'. These are only by exception to be used within the Bewertungssystem Nachhaltiges Bauen für Bundesgebäude (BNB).

	- Google-Suche	× 🔮 Database s			riozess-Datensat	: Baufritz HOL 🗙	· ·												- 0
←) →	۵	(i) 🔒 h	ttps://oekoba	udat.de/OEKO	BAU.DAT/datas	etdetail/process.x	html?lang=de	&uuid=2d22c	5e2-ffd0-4f70-9	03d-a5d553f4	39dd		⊌	✿ Such	en			I	II\ 🖸 🔅
Statut	30F	https://oel					detail/pr	ocess.xht	tml?uuid=	206deb3	3-2710-4	417d-9b92	-aa70c79	58334&st	ock=OBD	2019 <u>a</u> tta	⟨=er	Zurück	Schließer
 Prozess-In 	nformation																		
erninformati	ionen des Datens	atzes																	
Drt		DE																	
Referenzjahr		2018																	
ame		Name ; Quantita Baufritz HOIZ Ho			haften														
nwendungshin	nweis für Datensatz	Anwendung im C Anwendung auss				nüberstellung oder	die Bewertung	von EPD Dater	n nur möglich, we	enn alle zu vergl	eichenden Date	ensätze nach EN ⁻	5804 erstellt wur	den und die prod	uktspezifischen	Leistungsmerkma	ale berücksichti	gt werden.	
echnisches An	nwendungsgebiet	Die HOIZ - Hobel werden. Der Dämmstoff w		-						lraumdämmung	im Holzbau ein	ngesetzt. Generell	können jedoch al	le Hohlräume vo	n Bauteilen (aucl	h Stahlkonstruktio	onen) damit ged	lämmt bzw. aku	stisch gedär
ynonyme		Holzspandämmu	ng, Holzdämm	nung, Holzfaser	dämmung														
		2.10.02																	
	mmer																		
liederungsnun	mmer	Klassenname : H OEKOBAU.DAT:			sern / Holzfaser	und Holzspäne, I	ose												
iliederungsnun lassifizierung Ilgemeine Ann	mmer merkungen zum	OEKOBAU.DAT: Die gegenständli Die HOIZ - Hobel	2.10.02 Dämn che EPD bezie	nstoffe / Holzfa eht sich auf das	s Produkt HOIZ	Hobelspandämm	ıng, hergestellt				im Holzbau ein	ngesetzt. Generell	können jedoch al	le Hohlräume vo	n Bauteilen (auc	h Stahlkonstruktio	onen) damit ged	lämmt bzw. aku	stisch gedä
iliederungsnum lassifizierung Ilgemeine Ann latensatz		OEKOBAU.DAT: Die gegenständli Die HOIZ - Hobel	2.10.02 Dämn che EPD bezie spandämmung	nstoffe / Holzfa eht sich auf das	s Produkt HOIZ	Hobelspandämm	ıng, hergestellt				im Holzbau ein	ngesetzt. Generell	können jedoch al	le Hohlräume vo	n Bauteilen (aucl	h Stahlkonstruktio	onen) damit ged	lämmt bzw. aku	stisch gedä
liederungsnun lassifizierung ligemeine Ann atensatz arameter zur	merkungen zum r Beschreibung de	OEKOBAU.DAT: Die gegenständli Die HOIZ - Hobel er Umweltwirkung Rohstoffbereits H	2.10.02 Dämn che EPD bezie spandämmung gen erstellung	nstoffe / Holzfa eht sich auf da: g wird als Wärn Transport	s Produkt HOIZ ne- und Schalldå Herstellung	Hobelspandämmu mmstoff für Däche Transport	ing, hergestellt r, Decken und Einbau	Wände als nich Nutzung	t belastbare Hohl Instandhaltung	Iraumdämmung Reparatur	Ersatz	Umbau/Erneue	Energieeinsatz	Wassereinsatz	Abbruch	Transport	Abfallbehandlu	Beseitigung	Recycling
Sliederungsnun (lassifizierung NIgemeine Ann Datensatz arameter zur Indikator \$	merkungen zum r Beschreibung de	OEKOBAU.DAT: Die gegenständli Die HOIZ - Hobel er Umweltwirkung	2.10.02 Dämn che EPD bezie spandämmung gen	nstoffe / Holzfa eht sich auf da: g wird als Wärn	s Produkt HOIZ ne- und Schalldå	Hobelspandämmi mmstoff für Däche	ıng, hergestellt r, Decken und	Wände als nich	t belastbare Hohl	Iraumdämmung			,		×.		, ,		5

<u>Giobales</u> Erwärmungspot (GWP)	<u>kq CO2-Aqv.</u>	0	-107	0	0	1.04	0.00126	0	0	U	U	0	0	0	U	0.300	113	U	-45.8
Abbau Potential der stratosphärische		0	8.75E-9	0	0	1.17E-11	7.57E-14	0	0	0	0	0	0	0	0	2.6E-12	4.74E-11	0	-1.39E-9
Ozonschicht (ODP)																			
Bildungspotentia für troposphärische Ozon (POCP)		0	0.00084	0	0	-0.00245	1.35E-7	0	0	0	O	0	0	0	0	-0.000545	0.000984	0	-0.00533
Versauerungspo von Boden und Wasser (AP)	kg SO2-Äqv.	0	0.0101	0	0	0.0072	0.00000182	0	0	0	0	0	0	0	0	0.0016	0.0103	0	-0.0483
Eutrophierungsp (EP)	<u>kq Phosphat-</u> <u>Äqv.</u>	0	0.00229	0	0	0.00177	2.89E-7	0	0	0	0	0	0	0	0	0.000393	0.00226	0	-0.00754

🌀 oekobau.dat - Google-Suche 🔷	- D
\leftrightarrow \rightarrow C' $rac{1}{2}$	🛈 🔒 https://oekobaudat.de/OEKOBAU.DAT/datasetdetail/process.xhtml?uuid=206deb33-2710-417d-9b92-aa70c7958334&stock=OBD_2019_III⟨=en 💀 🐼 🔍 Suchen
over the second	Collapse all sections Go back Close
 Process information 	
Key Data Set Information	
Location	DE
Geographical representativeness description	The data set represents the country specific situation in Germany, focusing on the main technologies, the region specific characteristics and / or import statistics.
Reference year	2017
Name	Base name ; Quantitative product or process properties Cotton, conventional; 40 kg/m3
Use advice for data set	The data set represents a cradle to gate inventory. It can be used to characterise the supply chain situation of the respective commodity in a representative manner. Combination with individual unit processes using this commodity enables the generation of user-specific (product) LCAs.
Technical purpose of product or process	This product can be used in construction.
Classification number	2.14.01
Classification	Class name : Hierarchy level oekobau.dat: 2.14.01 Insulation materials / Cotton / Conventional Cotton
General comment on data set	This data set has been modeled according to the European Standard EN 15804 for Sustainable Building. Results are depicted in modules that allow the structured expression of results over the entire life cycle.
Uncertainty margins	20
Description	Product system depicted except for a few missing processes / flows. Technological, temporal and geographic representativeness partly given.
Copyright	Yes
Owner of data set	thinkstep

Indicators of the impact assessment

		Production
Indicator 🗘	Unit 🗘	A1-A3
Global warming potential (GWP)	kg CO2 eg.	-0.7803
Ozone Depletion Potential (ODP)	kg R11 eg.	1.198E-15
Photochemical Ozone Creation Potential (POCP)	kg Ethene eq.	0.0003181
Acidification potential (AP)	kg SO2 eg.	0.007502
Eutrophication potential (EP)	kg Phosphate eq.	0.01162
Abiotic depletion potential for non fossil resources (ADPE)	kg Sb eg.	0.00002732
Abiotic depletion potential for fossil resources (ADPF)	MJ	11.53

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit Bewertungssystem Nachhaltiges Bauen (BNB) Büro- und Verwaltungsgebäude (New Office Buildings) 1.1.1

Hauptkriteriengruppe	Ökologische Qualität
Kriteriengruppe	Wirkungen auf die globale und lokale Umwelt
Kriterium	Treibhauspotenzial (GWP)

Bewertungsmaßstab		Anforderungsniveau				
Target value	Z: 100	$\leq 24 \text{ kg CO}_2$ -Äqu./(m ² _{NGFa} ·a)				
Reference value						
Limit value	G: 10	$\geq 66 \text{ kg CO}_2 - \ddot{A} qu./(m^2_{NGFa} \cdot a)$				
2.0	0	Das Treibhauspotenzial (GWP) wurde nicht nachgewiesen.				
	Zwische	enwerte sind abschnittsweise linear zu interpolieren.				

50 a // A1 + A2 + A3 + B4 + B6 + C3 + C4

1.1.1

Bau und Reaktorsicherheit	Bewertungssystem Nachhaltiges Bauen (BNB) Büro- und Verwaltungsgebäude Office Buildings Modul Komplettmodernisierung Major renovation							
Hauptkriteriengruppe	Ökolo	gische Qualität						
Kriteriengruppe	Wirkungen auf die globale und lokale Umwelt Treibhauspotential (GWP)							
Kriterium								
Bewertungsmaßstab		Anforderungsniveau						
Target value	Z: 100	$\leq 24 \text{ kg CO}_2 - \ddot{A} \text{qu.} / (\text{m}^2_{\text{NGFa}} \cdot \text{a})$						
Reference value	R: 50	= 37 kg CO ₂ -Äqu./(m^2_{NGFa} :a)						
Limit value	G: 10	$\geq 66 \text{ kg CO}_2 \text{-} \ddot{A} \text{qu.} / (\text{m}^2_{\text{NGFa}} a)$						
	0 Das Treibhauspotenzial (GWP) wurde nicht nachgewiesen							
	Zwischenwerte sind abschnittsweise linear zu interpolieren.							

Background report – new LCA benchmarks 2015

In 2015, the current benchmarks for newly constructed office buildings for the sustainability assessment system BNB were developed as part of a study. The table below shows (from top to bottom) target, reference and limit values for the full life cycle - embodied + operational (reference study period = 50 years). This resulted in a **system of benchmarks** for different indicators.

The development of benchmarks was based on reference buildings (bottom up approach).

1.1.1	1.1.2	1.1.3	1.1.4	1.1.5	1.2.1	1.2.2.1	1.2.2.2
GWP (CO _{2"} Āqu.) [kg/m ² a]	ODP (R11-Āqu.) [kg/m ² a]	POCP (C ₂ H ₄ -Āqu.) [kg/m ² a]	AP (SO ₂ -Âqu.) [kg/m ² a]	EP (PO₄-Âqu.) [kg/m²a]	PE _{ne} [kWh/m²a]	PE _{ges} [kWh/m²a]	PE _{en,} [kWh/m²a]
22,6	0,000000042	0,0057	0,0574	0,0077	104	114	37,2%
35,9	0,000000119	0,0100	0,0860	0,0142	160	197	29,2%
66,2	0,000000196	0,0200	0,1601	0,0277	217	343	14,8%

	Endbericht
ti	ür das BBSR - Forschungsvorhaben
Forschungsprogramm:	Zukunit Bau
Forschungsprojekt:	Entwicklung einer Methodik zur Festlegung von Benchmarks für LCA u LCC im Rahmen der BNB-Systementwicklung – BNB-Referenzmodell
Aktenzeichen:	10.08.17.7-14.19
Forschungsgeber:	Bundesinstitut für Bau-, Stadt und Raumforschung (BBSR) Referat II 5 Nachhaltiges Bauen
Forschungsnehmer:	Steinbeis-Hochschule-Berlin GmbH Steinbeis-Transfer-Institut Bau- und Immobilienwirtschaft
Forschungsteam:	DiplIng. Bernd Landgraf (Projektleiter) Prof. DrIng Jörn Krimmling

1		I
8,20	12,31	22,63
12,62	23,16	35,89
23,11	46,12	66,23
	•	•

GWP in detail: embodied/operational/total

Nutzung: Büro	Variationen						
Grundrisse	F	Rechteck / Winkel / Atrium					
Raumkonzepte	Kombizone, zweibündig Zellenbüro, zweibündig Zellenbüro, einbündig						
Geschosse		1 + 0 (1 OG, 0 UG) 3 + 0 (3 OG, 0 UG) 6 + 1 (6 OG, 1 UG)					
Außenwände	Stahlbeton / Poroton / Holz						
Fensterflächenanteile	30% (Lo	chfassade) /	73% (Glasfa	ssade)			
Dämmstandards	niedrig (EnE	EV 2009) / ho	ch (EnEV 20	09 - 50 %)			
Dämmmaterialien	Steinwolle	/ Mineralwolle in Poroton / Zellulose					
			U-Werte	[W/m ² K]			
Dämmstandard		Boden	Wand	Dach	Fenster		
niedrig (Referenzgebäud	e EnEV 2009/2014)	0,350	0,280	0,200	1,300		
hoch (Referenzgebäude	EnEV 2009/2014 - 50 %)	0,175	0,140	0,100	0,650		
Tabelle 16: Variationselemente	der Geometrie und Bauweise für d	lie Variantenbild	ung der Modelig	ebäude	,		

Die folgende Tabelle zeigt den Unterschied zwischen den verwendeten Modulen der Ökobau.dat-Versionen 2013 und 2015.

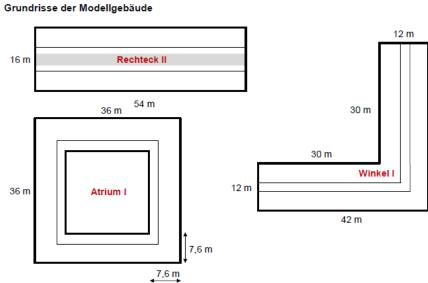

Lebenszyklusphase	Ökobau.dat Version 2013	Ökobau.dat Version 2015
Herstellung	Module A1 - A3 (teilweise - A5)	Module A1 - A3
Erneuerung	("Herstellung" + "End of Life") x Anzahl der Erneuerungen	("Herstellung" + "End of Life") x Anzahl der Erneuerungen
Nutzung (Energiebedarf)	Modul B6	Modul B6
End of Life	Module C3, C4 und D	Module C3, C4

Tabelle 22: Definition der zu bilanzierenden Module in der LCA zur Bewertung der BINB-Kinterien 1.1.1-1.1.5, 1.2.1, 1.2.2

	Dämmstanda	rd niedrig	Dämmstandard hoch			
Bauteil	Dämmmaterial	Dämmdicke	Dämmmaterial	Dämmdicke		
Boden	XPS	60	XPS	120		
Wand A (Stahlbeton)	Steinwolle	115	Steinwolle	240		
Wand B (Mauerwerk)	Porotonziegel	(365)	Mineralwolle gefüllte Porotonziegel	(490)		
Wand C (Holzskelett)	Holz + Zellulose	180	Holz + Zellulose	320		
Dach A und B	PU-Schaum	150	PU-Schaum	300		
Dach C	Holz + Zellulose	260	Holz + Zellulose	560		
Fenster	Holz	WSV 2-fach	Aluminium	WSV 3-fach		

Tabelle 20: Dämmstandards der Modellgebäude

details Reference building approach Damit die Gebäude vergleichbar sind, wurden Grundrisse mit gleicher Grundfläche (864 m² definiert.

Benchmark(s)	Performance level(s)	Country
Benchmark system with GWP, ODP, AP, EP, Penr,	Target value Reference value Limit value	Germany
Calculation Method	Included Modules	Reference study period
National assessment method based on LCA	A1, A2, A3, B4, B6, C3, C4	50 years Static/deterministic approach
Data base	Time of validity of benchmarks	Reference unit / level of dis-aggr.
Oekobau.dat (public available)	2015 - 2020	/m ² * a total (embodied + operation)
Basis	Approach	Use case
Reference buildings / archetypes	Bottom up	Sustainability assessment Green public procurement

DGNB - Sustainability assessment system

The present version is the English translation of the **German system version 2018, 3rd edition (as at June 2018)**. It is based on the requirements and benchmarks of the German market.

Criterion **ENV1.1 "Building life cycle assessment"** is assessed in the same way as the results of a building life cycle assessment. The results of this life cycle assessment are designated as an "Environmental profile" or "Environmental quality" of a building.

A building life cycle assessment determines and evaluates the environmental quality of a building, taking into account its scheme (office building, commercial building, school, etc.) and **compares the results with reference values**. The basis used for obtaining the data must be documented and provided in order to prevent any doubt when checking the results. The building life cycle assessment **should be used during the planning phase itself, where possible**. It can provide an important instrument for optimising the environmental quality of the building.

The basis used for calculating the building life cycle assessment is DIN EN 15978.

DGNB system – New buildings criteria set 2018 VERSION Environmental quality OVERVIEW 0

Environmental quality

The six criteria of environmental quality allow an assessment to be made with regard to the effects of buildings on the global and local environment as well as the impact on resources and the generation of waste.

ENV1.1 Building life cycle assessment

2.2. Reference values for the building life cycle assessment

The reference values (40 sub-points) for the environmental indicators (EIPGref) are generally derived from

- a fixed proportion for the construction-related value of the environmental impacts of emissions for construction, maintenance and recovery/disposal, as well as
- a variable proportion for the use-related value of the environmental impacts of emissions at the level of the reference building used as a basis in DIN V 18599/EnEV 2014 (or standardised energy simulation). The variable proportion is calculated from the electricity and heating demand (final energy) determined in accordance with DIN V 18599/EnEV 2014 (or standardised energy simulation), multiplied by defined factors (values of the environmental profiles for the electricity mix and a representative thermal energy mix).

 $R_{EIP} = EIP_{Gref} = EIP_{Cref} + EIP_{Uref}$ (5)

where

EIP cref Reference value for the annual average value of the

environmental impact potential for **construction**, **maintenance**, **recovery and disposal** of the building including the technical facilities used across the reference period considered t_d, in [kg environmental impact equivalent/(m²_{SA}*a)]

EIPUref Reference value for the annual environmental impact potential resulting from

operation of the building, derived from the final energy demand of the reference building in accordance with EnEV 2014 (or standardised energy simulation) or – for selected schemes – reference value for the annual environmental impact potential resulting from the **user equipment** during building operation, derived from the final energy demand of the defined facilities in [kg environmental impact equivalent/(m²_{SA}*a)]

The reference values for the construction EIPcref are determined as follows:

EIP_{Cref} = constant (6)

The EIPcref values are determined using parameters derived from statistical studies.

The reference values for the use EIPuref are determined as follows:

 $EIP_{Uref} = EIP_{UEref} + EIP_{UHref} + EIP_{UFref}$ (7)

where

- EIP_{UEref} Environmental impact potential of the annual electricity demand (final energy) of the reference building in accordance with EnEV 2014 (or standardised energy simulation) in [kg environmental impact equivalent/(m²_{SA}*a)]
- EIP_{UHref} Environmental impact potential of the annual heating and, where applicable, cooling demand
 - (final energy) of the reference building in accordance with EnEV 2014 (or standardised energy simulation) in [kg environmental impact equivalent/(m²_{SA}*a)]
- EIPUFref only for selected schemes: Reference value for the
 - annual environmental impact potential of the **user equipment during building operation**, derived from the final energy demand of the defined facilities in [kg environmental impact equivalent/(m²_{SA}*a)]

The calculation of the final energy demand is based on either EnEV 2014 (DIN V 18599) or a standardised energy simulation.

The reference period t_d is 50 years. A reference period of 20 years must be selected for the **Production** and **Logistics** schemes.

A 1–3	3		A 4-	5	B 1-	7						C 1–4	Ļ			D
		ION			USE	PHAS	SE							IE LIFI	E	BENEFITS AND LIABILITIES OUTSIDE OF THE SYSTEM LIMITS
RAW MATERIALS PRO- CUREMENT	TRANSPORT	PRODUCTION	TRANSPORT	EREC- TION/INSTALLATION	USE 1	MAINTENANCE 2	REPAIR	REPLACEMENT 2	MODERNISATION	ENERGY CONSUMPTION DURING OPERATION	WA LEK CONSUMP ITON DURING OPERATION	DISMAN- TLING/DEMOLITION	TRANSPORT	WASTE RECYCLING	DISPOSAL	POTENTIAL FOR REUSE, RECOVERY AND RECY- CLING
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	х	x				(x) 3		(x) 4		х	(x)5			х	х	х
	Dad RAW MATERIALS PRO- CUREMENT	PHASE RAW MATERIALS PRO- CUREMENT TRANSPORT V1 V2	PRODUCTION PHASE -OREMENT TRANSPORT PRODUCTION TRANSPORT A1 A2 A3	PRODUCTION PHASE PHA OULTION ERE PHA COLLEMENT LIVANSPORT LIVANSPORT A1 A2 A3 A4	PRODUCTION PHASE ERECTION PHASE -ONG REMENT CUREMENT -ONG REMENT FRANSPORT -ONG REMENT NONCTION TRANSPORT FRANSPORT -ONG REMEC- NUNSTALLATION A1 V A1 V A1 V A1 V A1 V	PRODUCTION ERECTION PHASE USE OULE MENT USE USE -ONA STRUNCTION LIVANSPORT USE A1 A2 A3 A4 A5	PRODUCTION PHASE ERECTION PHASE USE PHASE - - - -	PRODUCTION PHASE ERECTION PHASE USE PHASE - - - -	PRODUCTION PHASE ERECTION PHASE USE PHASE -OULE MENT CULE MENT -OULE MENT LIKANSPORT -OULE MENT LIKANSPORT ILIKANSPORT LIKANSPORT ILIKANSPORT RANNATERIALS NOLLION LIKANSPORT ILIKANSPORT LIKANSPORT AND LIKANSPORT A1 A2 A3 A4 A5 B1 B4 MAINTENANCE 2 X X X X	PRODUCTION PHASE ERECTION PHASE USE PHASE -OULE MENT PHASE LIKANSPORT PHASE 1 -OULE MENT PHASE NOUCTION PHASE 1 -OULE MENT PHASE 1 -OULE MENT PH	PRODUCTION PHASE ERECTION PHASE USE PHASE -OLLEWENT PHASE LIRANSPORT IRANSPORT -OLLEWENT PHASE NOLCTION PHASE IRANSPORT -OLLEWENT PHASE NOLCTION PHASE IRANSPORT -OLLEWENT PHASE NOLCTION PHASE IRANSPORT -OLLEWENT PHASE NOLCTION PHASE IRANSPORT A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B0 NODERNISATION PURING OPERATION IRANSPORT	PRODUCTION PHASE ERECTION PHASE USE PHASE -OULLION LIVINSTALLATION -OULLION LIVINSTALLATION -OULLION RECTION -OULLION RECTON -OULLION RECTON -OULLION RECTON -OULLION RECTON -OULLION RECTON -OULLION RECONCIUNATION -OULLION RECONCIUNATION A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 MAINER MAINER C(X) (X) X X	PRODUCTION PHASE ERECTION PHASE USE PHASE END CYCL OLL COLEMENT LIKANSPORT SAW MATERIALS PRO- CYCL OLL COLEMENT NO NO NO LIKANSPORT LIKANSPORT NO NO LIKANSPORT NO NO NO LICON NO NO NO LICON NO NO NO DURING NO NO NO DURING NO B1 NO DURING DURING B1 NO DURING NO NO NATER CONSONNELION NO SA NO DURING B4 B6 DISMAN- (X) (X) X	PRODUCTION PHASE ERECTION PHASE USE PHASE END OF TH CYCLE -OLIEMINI PHASE ITRANSPORT ITRANSPORT NOILINNITALLATION -ONOLUTION PHASE NOLUTION 1 NOILINNITALLATION INOLUTION PHASE NOILINNINITALLATION 1 NOILINNINITALLATION AI VANALER CONSUMPTION 1000 NOILINNINITALLATION AI VAI ER CONSUMPTION 1000 NOILINNINITALLATION AI A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 AI A2 A3 A4 A5 B1 B2 B3 B4 B6 B7 C1 C2 X	PRODUCTION PHASE ERECTION PHASE USE PHASE END OF THE LIFE CYCLE OLLEWENT HASE LANSPORT END OF THE LIFE OLLEWENT PRODUCTION HASE NULLEVICE OLLEWENT NONLEVENT NONLEVENT NONLEVENT OLLEWENT NONLEVENT NONLEVENT NONLEVENT ANNTENDORT REPAIR REPAIR NONLEVENT NONLEVENT NONLEVENT NONLEVENT NONLEVENT ANALEK CONSUMPTION NODERVISATION NONLEVENT NONLEVENT A1 A2 A3 A4 A5 B1 B2 B3 B4 B6 B7 C1 C2 C3 A1 A2 A3 A4 A5 B1 B2 B3 B4 B6 B7 C1 C2 C3 X X X X X X X X X	PRODUCTION PHASE ERECTION PHASE USE PHASE END OF THE LIFE CYCLE -OULEMENT NOTION ITRANSPORT NOTION -OULEMENT NOTION ITRANSPORT NOTION -OULEMENT NOTION ITRANSPORT NOTION -OULEMENT NOTION NOTION NOTION -OULINO NOTION NOTION NOTION -OULINO NOTION NOTION NOTION AT NOTION NOTION NOTION AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT

ENV1.2 and SOC1.2

2) A scenario for the energy demand of the building in use, whereby only the energy demand recorded in EnEV 2014 is taken into account (module B6).

3) Maintenance processes are partially represented as water consumption in ENV2.2. Not included in the building life cycle assessment.

4) Only includes the creation and disposal of the replaced product, not the replacement process itself (same as for construction process).

5) Water consumption of the building is only taken into account for the "Water consumption" indicator.

	GWP	ODP	POCP	AP	EP
Unit	[kg CO ₂ equivalent/(m² _{SA} *a	[kg R11)equivalent/(m² _{SA} *a	[kg C₂H₄)equivalent/(m² _{SA} *a		[kg PO₄³ a)equivalent/(m² _{SA} *a)
]]]]
Office Education Residential Hotel Consumer markets Shopping centre Business premises	5		maintenance ar		
Construction Logistics	GWP _{Cref} = 9.4	ODPCref = 5.3 * 10	⁷ POCP _{Cref} = 0.0042	AFCret - 0.037	EP _{Cref} = 0.0047
Production Construction (per m ³ BRI) Logistics Production	GWP _{Cref} = 1.2/(m³ _{BRI} *a)	_	⁸ POCP _{Cref} = 0.0005 /(m³ _{BRI} *a)	5 AP _{Cref} = 0.003 /(m³ _{BRI} *a)	EP _{Cref} = 0.0004 /(m³ _{BRI} *a)
Construction (per m ² SA)	GWP _{Cref} = 12/(m² _{SA} *a)	ODP _{Cref} = 1.9 * 10 ⁻⁷ /(m² _{SA} *a)	⁷ POCP _{Cref} = 0.005/(m² _{SA} *a)	AP _{Cref} = 0.03/(m² _{SA} *a)	EP _{Cref} = 0.004/(m² _{SA} *a)

Table 1: Reference values for construction, maintenance and recovery/disposal ("construction") as well as use: GWP, ODP, POCP, AP, EP

	GWP	ODP	POCP	AP	EP
Unit	[kg CO ₂ equivalent/(m² _{SA} *a	[kg R11 a)equivalent/(m² _{SA} *a	[kg C₂H₄ a)equivalent/(m² _{SA} *a	[kg SO ₂ a)equivalent/(m² _{SA} *a	[kg PO₄³ a)equivalent/(m² _{SA} *a)
]]]]
Use	GWP _{Uref} = GWP _{UEref} + GWP _{UHref} + GWP _{UF,ref}	ODP _{Uref} = ODP _{UEref} + ODP _{UHref} + ODP _{UF,ref}	POCP _{Uref} = POCP _{UEref} + POCP _{UHref} + POCP _{UF,ref}	AP _{Uref} = AP _{UEref} + AP _{UHref} + AP _{UF,ref}	EP _{Uref} = EP _{UEref} + EP _{UHref} + EP _{UF,ref}
	where	where	where	where	where
	GWP _{UEref} = 0.579 * E _{ref}	ODP _{UEref} = 2.08 * 10 ⁻¹² * E _{ref}	POCP _{UEref} = 0.0000607 * E _{ref}	AP _{UEref} = 0.000871 * E _{ref}	EP _{UEref} = 0.000142 * E _{ref}
	GWP _{UHref} = 0.231 * H _{ref}		POCP _{UHref} = 3.03 * 10 ⁻⁵ * H _{ref}		EP _{UHref} = 2.65 * 10 ⁻⁵ * H _{ref}
Office Education Residential Hotel Consumer market Shopping centre					
Business premise	s GWP _{UF,ref} = 0	$ODP_{UF,ref} = 0$	POCP _{UF,ref} = 0	AP _{UF,ref} = 0	EP _{UF,ref} = 0
Consumer markets Shopping centre Business premise	0.579 * EUFref	ODP _{UFEref} = 2.08 * 10 ⁻¹² * E _{UFre}	POCP _{UFEref} = f 0.0000607 * E _{UFref}	AP _{UFEref} = 0.000871 * E _{UFref}	

Table 1: Reference values for construction, maintenance and recovery/disposal ("construction") as well as use: GWP, ODP, POCP, AP, EP

Table 2: Reference values for construction, maintenance and recovery/disposal ("construction") as well as use: PEnr, PEtot and PEe/PEtot ratio

1410		•		
	PE _{NR}		ΡΕτοτ	PE _E /PE _{TOT}
Unit	[MJ/(m² _{SA} *a)]		[MJ/(m² _{SA} *a)]	[%]
Office Education Residential Hotel Consumer markets Shopping centre Business premises Construction	s		intenance and recovery/dis	
Logistics Product		34,16 kWh/m²a	F Ltot,Cref - 131	[-]
Construction (per m ³ BRI)	PE _{nr,Cref} = 12.3		PE _{tot,Cref} = 13.7	[-]
Logistics Product	tion			
Construction (per m ² SA)	PE _{nr,Cref} = 123		PE _{tot,Cref} = 137	[-]

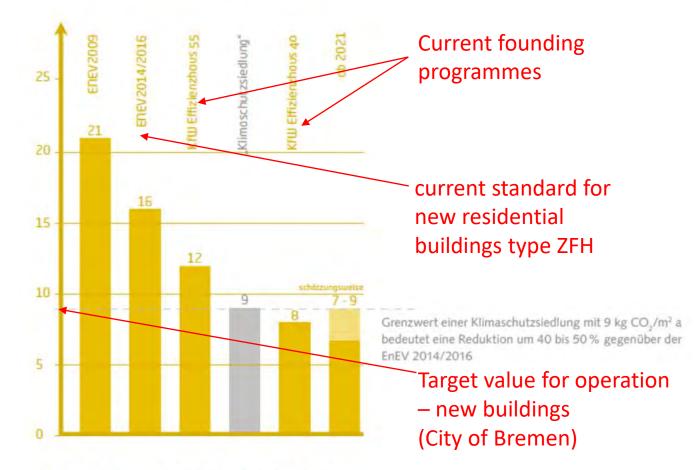
Table 2: Reference values for construction, maintenance and recovery/disposal ("construction") as well as use: PEnr, PEtot and PEe/PEtot ratio

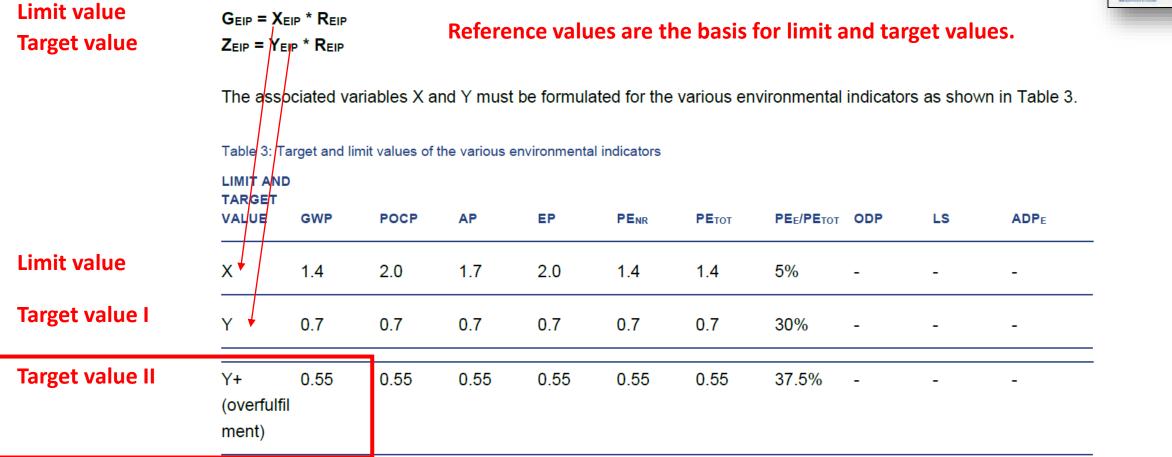
PE	INR	ΡΕτοτ	PE _E /PE _{TOT}	
nit [M	IJ/(m² _{SA} *a)]	[MJ/(m ² sa*a)]	[%]	
Use	PE _{nr,Uref} = (PE _{nr,UEref} + PE _{nr,UHref} + PE _{nr,UFref})	PE _{tot,Uref} = (PE _{tot,UEref} + PE _{tot,UHref} + PE _{tot,UFref})	[-]	
	where	where		
	PE _{nr,UEref} = 7.3 MJ/kWh * E _{ref}	PE _{tot,UEref} = 11.18 MJ/kWh * E _{ref}		
	$PE_{nr,UHref}$ = 3.44 MJ/kWh * H _{ref}	PE _{tot,UHref} = 4.13 MJ/kWh * H _{ref}		
Office Education				
Residential Hotel				
Consumer markets				
Shopping centre				
Business premises	$PE_{nr,UFref} = 0$	$PE_{tot,UFref} = 0$		
Consumer markets	PEnr,UFref = 7.3 MJ/kWh * EUFref	PE _{tot,UFref} = 11.18 MJ/kWh * E _{UFref}		
Shopping centre				
Business premises				

https://static.dgnb.de/fileadmin/en/dgnb_system/system/version2018/02_ENV1.1_Building-life-cycle-assessment.pdf?m=1530286752&

GHG-Emissions for residential buildings – use stage (operation)

Beispiel Doppelhaushälfte (Neubau)




Abbildung 1: CO2-Emissionen von Klimaschutzsiedlungen im Vergleich

CO2-Emissionen für Heizung, Lüftung, Warmwasser, Hilfsstrombedarf (ohne Haushaltsstrom) bezogen auf die reale Wohnfläche

https://www.energiekonsens.de/bau-stadtentwicklung/broschueren/Leitfaden_Klimaschutzsiedlungen%20Bremen%20und%20Bremerhaven_web.pdf

Limit value and target value calculation

Limit values G and target values Z, which are also required for evaluation of the criterion, are generally defined as a factor applied to the reference values for the various environmental impact potentials, expressed mathematically as follows:

List of criteria with agenda 2030 bonuses

CRITERION	CRITERION NAME	CONTRIBUTION TO THE AGENDA 2030 OBJEC- TIVES	SCORE
ENV1.1	Building life cycle assessment	Climate-neutral operation (building): The CO ₂ emissions generated as a result of the energy demand arising from the running of the building are at least offset in accordance with the DGNB definition for establishing climate neutrality*.	Agenda 2030 bonus: +10 points
ENV1.1	Building life cycle assessment	Climate-neutral operation (users): The CO ₂ emissions generated as a result of the energy consumption arising from the building users' activities are at least offset in accordance with the DGNB definition for establishing climate neutrality*.	Agenda 2030 bonus: +10 points
ENV1.1 https://static.dgnb.	Building life cycle assessment de/fileadmin/en/dgnb_system/syste	Climate-neutral building construction: The total CO2 emissions (CO2 equivalents) from manufacturing and maintenance processes as well as end of life that are bound in the building and are determined by means of a DGNB life cycle assessment are at least offset *. (Life cycle scenario analysis). em/version2018/02_ENV1.1_Building-life-cycle-assessment.pdf?m=153024	Agenda 2030 bonus: +10 points (+5 points if the value is 50% less than the reference value)

https://static.dgnb.de/fileadmin/en/dgnb_ev/reports/Framework-carbon-neutral-buildings.pdf

New developments

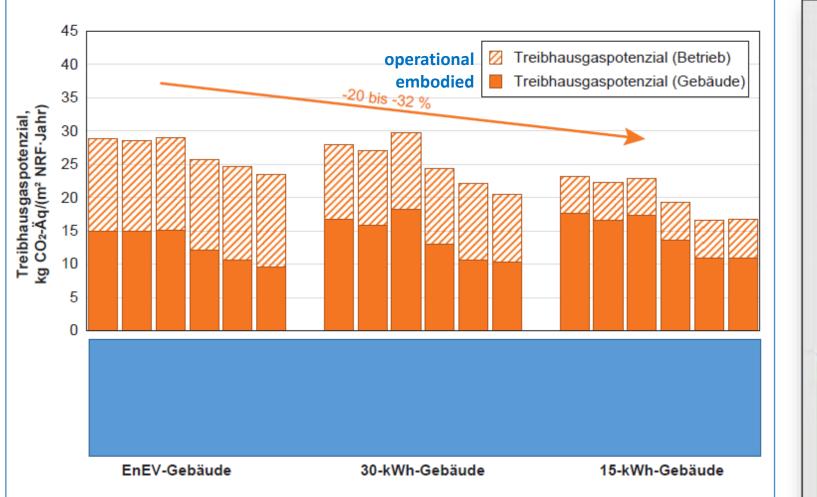
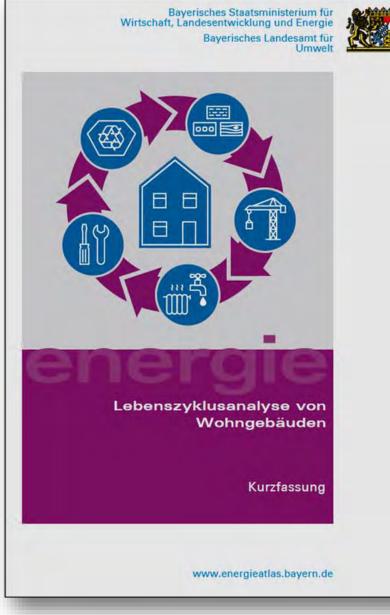



Abb. 13: Treibhausgaspotenziale der einzelnen Bauweisen und Energieniveaus am Beispiel der Luft-Wasser-Wärmepumpe

No benchmarks are presented here, but typical orders of magnitude for different types of residential buildings.

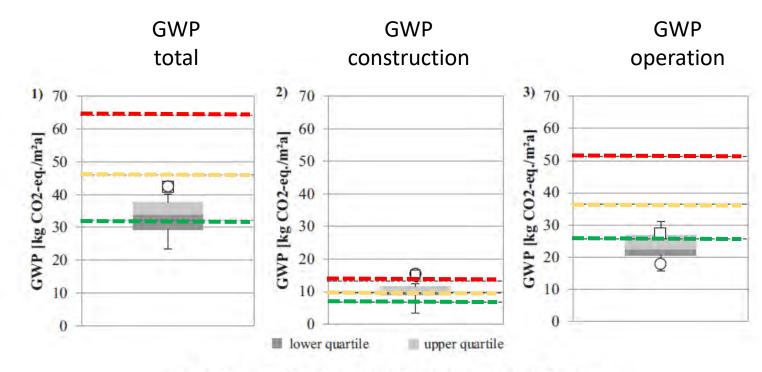
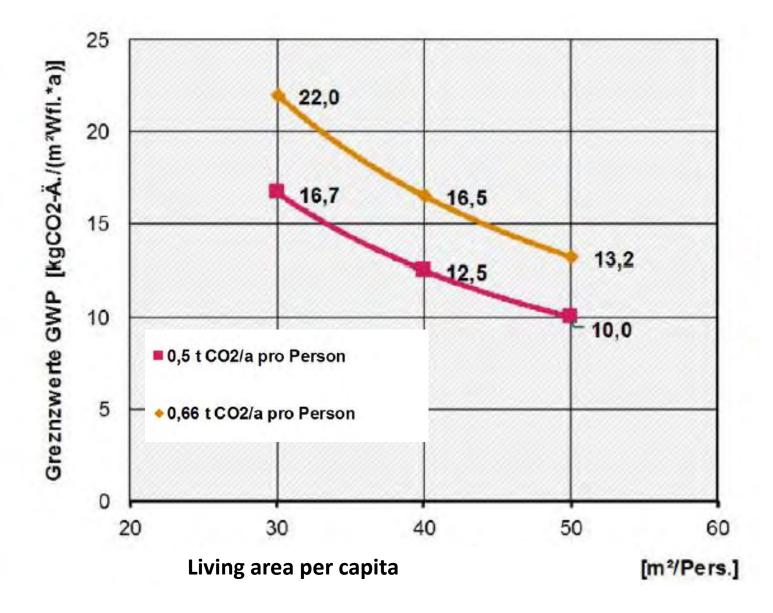



Fig 6. Variance of benchmarks (1) Total (2) Construction (3) Operation.

"Three horizontal dashed lines can be seen per box plot. These lines show the benchmarks of the DGNB.

For the operation and thus for the total value, the value is an arithmetic mean of the 20 buildings. In the case of construction, the DGNB generally sets a value of 9.4. It can be seen that there are slight deviations between the statistical building evaluations and the DGNB benchmarks."

mexisting databases mexisting databases mexisting databases microsoft of substance many microsoft of substance many microsoft of substance many many	<page-header><image/><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header>		Contents lists avail	able at ScienceDirect	
Constraints of the second	<page-header><image/><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header>	2.2.2	Energy & Ruildings		
CA of buildings in Germany: Proposal for a future benchmark based n existing databases Image: Comparison of the comparis and to the comparison of the comparison of	<section-header><section-header><section-header><text><text><text><section-header><section-header><text></text></section-header></section-header></text></text></text></section-header></section-header></section-header>	E CL			
mexisting databases mexisting databases mexisting databases microsoft of substance many microsoft of substance many microsoft of substance many many	Series existing databases Friederike Schlegi ^{s,s} , Johannes Gantner ^b , René Traunspurger ^c , Stefan Albrecht ^b , Din existing databases Friederike Schlegi ^{s,s} , Johannes Gantner ^b , René Traunspurger ^c , Stefan Albrecht ^b , Din existing databases Friederike Schlegi ^{s,s} , Johannes Gantner ^b , René Traunspurger ^c , Stefan Albrecht ^b , Din existing databases Friederike Schlegi ^{s,s} , Johannes Gantner ^b , René Traunspurger ^c , Stefan Albrecht ^b , Din existing databases Friederike Schlegi ^{s,s} , Johannes Gantner ^b , René Traunspurger ^c , Stefan Albrecht ^b , Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner di Lé Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing databases Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner di Lé Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing databases Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner Jub Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing databases Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner Jub Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing databases Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner Jub Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing databases Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner Jub Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing databases Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner Jub Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing database Johannes Friederike Schlegi ^{s,s} , Johannes Cantre ^c , Jewarner Jub Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing database Johannes Friederike Schlegi ^{s,s} , Jewarner Jub Cycle Engineering (Gall, Nobekrage 12. Sungar 70563. German Existing database Johannes Friederike Schlegi ^{s,s} , Jewarner Jub Cycle Jew	ELSEVIER	journal homepage: www.	elsevier.com/locate/enbuild	
an automated quality assurance to prevent restraints from low data quality and data gaps that otherwise	L Introduction The building and construction industry is held responsible for regro consumption and about 35% of the greenhouse gas emissions worldwide [30]. The world's population is growing constantly and it is necessary to significantly minimize the environmental impact in this area in the future. Early planning phases of buildings of re a speneral opportunity to reduce long-term environmental impacts in the building industry, since the most important and far- eraching decisions are made at this stage [9,16]. However, early eaching decisions are made at this stage [9,16]. However, early the state of the state	on existing database Friederike Schlegl ^{3,4} , Johan Philip Leistner ¹⁵ University of Suttgart, Institute for Acoustic Zermany Heamhoff manuae for Building Physics (IR German Sucolustic Building Councel (DCM ARTICLE INFO Wride history:	S nes Gantner ^b , René Traun s and Building Physics (IABP). Department of PJ. Department of Ufe Cycle Engineering (Gal) eV. Tabinger Straße 43, Stattgert 70178, G A B S T R A C T The evaluation of environment	Spurger ¹⁵ , Stefan Albrecht ¹⁵ , Life Gyde Engineering (Galki), Wankeburgle 5, Sturgan 70563, Bi, Nobelsrugle 12, Stungan 70563, Germany ermany	
Corresponding author. E-mull address: frederike-schlegblitabpami-stortgari.de (F. Schlegt), Sults – is very time-consuming and therefore cost-intensive [17].		Introduction A logue 2018 Service 20 March 2019 Service 20 Annu 20 Annu 2019 Service	building life-cycle. The inter one potential measure. To c essential. Potential data inpu- certifies more than 200 buil the current subbility for autom. number of assessed building gard to data formal, structur to create an exemplay, har various environmental indic can thus serve as a benchm. tion like the energy source - LCA rules for building certi in the development of a dat and deployed, a standardize used LCA software, needs to an automated quality assura have to be detected manual have to be detected manual industry is held responsible for e consumption. 35% of the en- of the greenhouse gas emissions lation is growing constantly and mize the environmental impact lanning phases of buildings of- le long-term environmental impact his stage [9,16]. However, early	gration of life cycle assessment (LCA) benchmarks in the planning phase is ferive these benchmarks a large database of existing building assessment is ur is available from the German Sustainable Building Council (DCNB) as in dings annually and the certification includes a mandatory LCA. In this study and database of the DGNB are assessed and critically reviewed with regard term and LCA benchmarks. First, a harmonized database is created from the large sp. Second, the data is examined for its suitability for benchmarking with re- re and level of detail. The data that were declared fit for purpose were used monized data set with 22 diffice buildings. The evaluation of these data lot ators of the individual life-cycle phases shows their respective relevance and ark. Another focus is to encourage improvement of the addia lot ators of the individual life-cycle phases shows their respective relevance and ark. Another focus is to encourage improvement of the addia lot data of the individual life-cycle phases shows their respective relevance and ark. Another focus is to encourage improvement of the addia lot data uniform submission formato fresults, that is indifferent regarding the be developed. In the future the submission process should be extended by ince to prevent restraints from low data quality and data gaps that otherwise by. © 2019 Elsevier B.V. All rights reserved planning phases only sparse information on the planned build- ings or components is available, whereas the necessary decisions in theses phases are very complex [22,28]. Above all, innovative research and development is aimed at significantly reducing the sessment (LCA) results of realized assessed projects offer a good opportunity to receive intermitiand eaverages of the life cycle as- sessment (LCA) results of realized assessed projects offer a good opportunity to receive information on environmental issues at an early stage. In addition, they can be used to specify target values for future buildings. Currently, LCA is only used as proof for t	

Will we see legal requirements in future ???

:gie/Endbericht.pdf?___blob=publicationFile&v=3 lg/5EnergieKlimaBauen/2017/graue https://www.bbsr.bund.de/BBSR/DE/FP/ZB/Auftragsfor

Mögliche Optionen für eine Berücksichtigung von grauer Energie im Ordnungsrecht oder im Bereich der Förderung

Kurztitel:

Graue Energie im Ordnungsrecht/Förderung

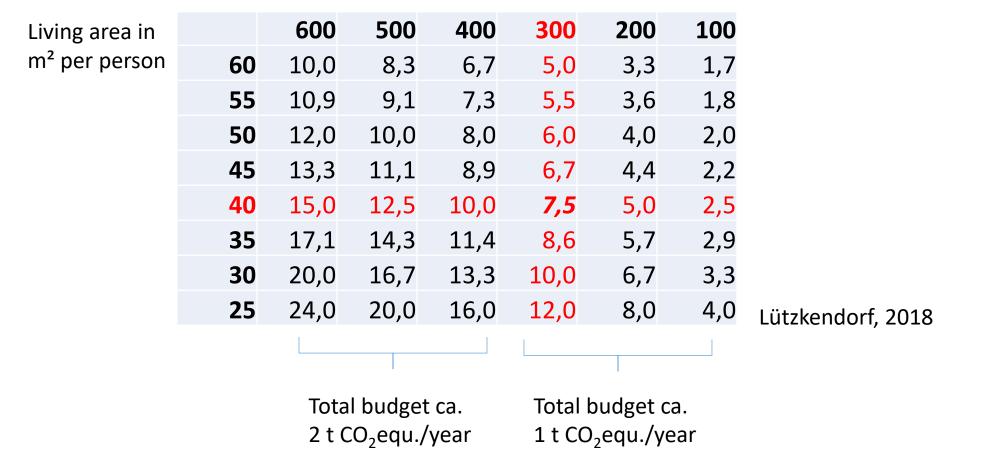
Endbericht Stand: 06.02.2019

Forschungsprogramm Zukunft Bau

Projektlaufzeit 07. Dezember 2017 bis 31. Mai 2018

Aktenzeichen 10.08.17.7-17.07b

im Auftrag des Bundesinstituts für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR)


bearbeitet von

Dr. Boris Mahler, Steinbeis-Transferzentrum für Energie-, Gebäude- und Solartechnik, Stuttgart M.Sc. Simone Idler, Steinbeis-Transferzentrum für Energie-, Gebäude- und Solartechnik, Stuttgart Dr. Johannes Gantner, Fraunhofer IBP, Stuttgart

Outlook and summary

Estimation of a per-capita "budget" for construction & housing in kg CO₂equ./m² of living area and year

Budget for construction and housing in kg CO_2 equ. / person and year

Benchmarks for individual buildings are **unavoidable for supporting the design process**.

So far, benchmarks have been inseparably tied to a system of methods (including system boundary, data set and calculation tool) and **can only be used in this context**.

The driver for the development and application of benchmarks in Germany was the sustainability assessment of public and private buildings. Here, experiences of more than 10 years exist.

Benchmark systems are used on the basis of **deterministic models** for construction and the entire life cycle. **Benchmarks are based on legal requirements, best practice and technical /economic feasibility**.

The German sustainability assessment systems are currently in the process of further developing their benchmarks in the "**top-down**" direction.

The system of limit, reference and target values has proven successful, but **new target values for GWP must be based on the requirements of climate neutrality.**

Summary