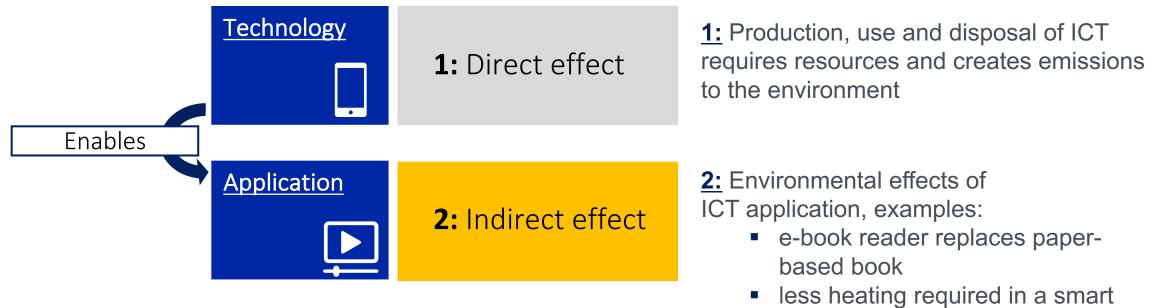


Indirect effects of digitalization on the environment


Jan Bieser, Informatics and Sustainability Research Group, Department of Informatics LCA Discussion Forum, 21 November 2019

Environmental effects of ICT

- less heating required in a smart home
- printer stimulates use of paper

Focus of this presentation: Indirect environmental effects of ICT

- less heating required in a smart home
- printer stimulates use of paper

Agenda

- 1. What are ICT applications?
- 2. How are environmental effects of ICT applications assessed?
- 3. What are methodological challenges in the assessment?

Agenda

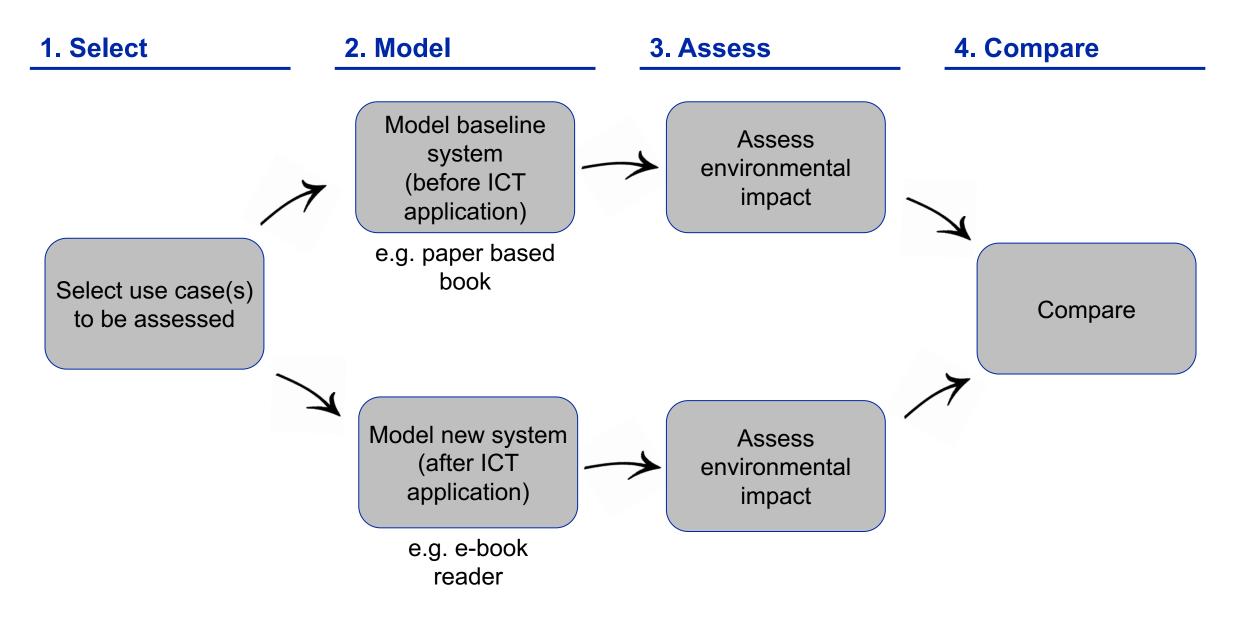
1. What are ICT applications?

2. How are environmental effects of ICT applications assessed?

3. What are methodological challenges in the assessment?

Assessments focus on various ICT use cases in various application domains.

Application Domain		Description	Example Use Cases	
	Virtual goods	Replacing physical goods with ICT-based services	 E-books Music and video streaming 	
	Shared goods	Coordinating access to goods, increasing utilization	 Sharing platforms 	
	Virtual mobility	Replacing physical travel with ICT-based remote action	Video conferencingRemote maintenance	
	Smart transport	ICT-enabled change of the process of transporting people or goods	Route optimizationTraffic flow management	
	Smart production	ICT-enabled change of the processes and business models of production	 Automation of production processes 	
	Smart energy	ICT applications in the energy sector	Smart meteringDemand side management	
	Smart buildings	Change of building management enabled by ICT	 Smart heating Smart lighting 	


Agenda

1. What are ICT applications?

2. How are environmental effects of ICT applications assessed?

3. What are methodological challenges in the assessment?

General assessment approach

Various assessment methods are applied.

Approach	Advantages	Challenges	
LCA			
Rough estimation method			

LCA is used to compare two product systems with each other – before and after ICT application.

Approach	Advantages	Challenges
LCA	 Compare two product systems with each other and assess complexities of use cases Used to improve design of an ICT solution or derive policy recommendation at product level 	 Less focus on changes of consumption patterns Difficult to consider (dynamic) rebound effects High effort and data requirements → usually applied to few ICT use cases
Rouah	••••••	***************************************

Exemplary LCA study: Paper-based books vs. e-book reader

Direct effect

 Global warming potential of 1 book read:

1.3 kg CO₂e

 Production emissions increase with each printed book

Paper-based

book

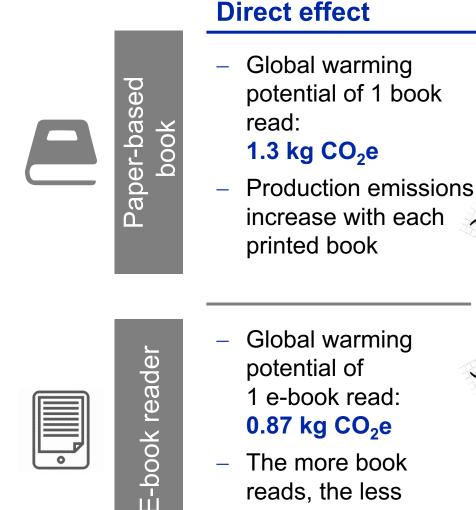
Exemplary LCA study: Paper-based books vs. e-book reader

Paper-based book

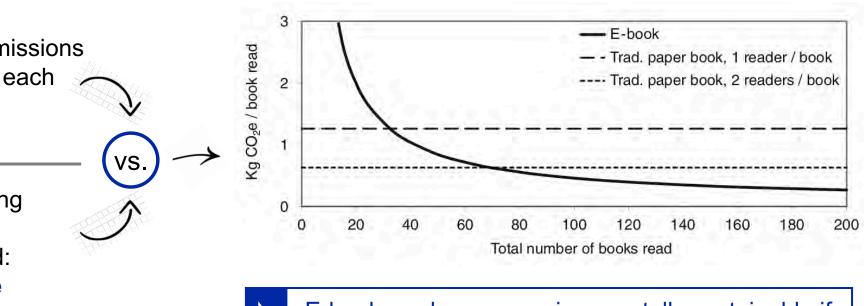
Direct effect

 Global warming potential of 1 book read:

1.3 kg CO₂e


 Production emissions increase with each printed book

E-book reader


- Global warming potential of
 1 e-book read:
 0.87 kg CO₂e
- The more book reads, the less emissions per read

Exemplary LCA study: Paper-based books vs. e-book reader

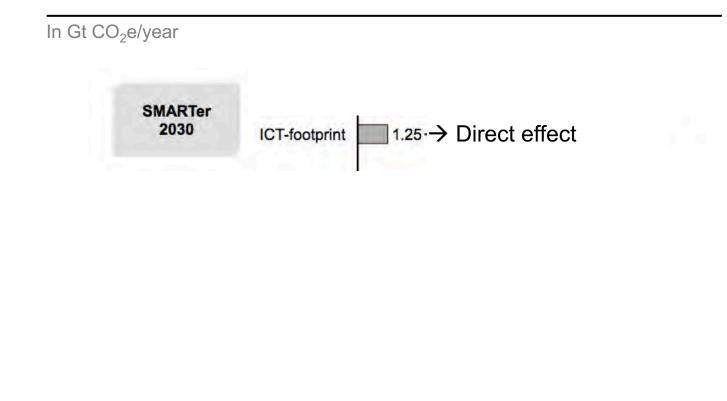
Indirect effect

Substituting paper-based books with an e-book reader

The more book reads, the less emissions per read E-book readers are environmentally sustainable if they avoid production of 30-40 paper-based books.

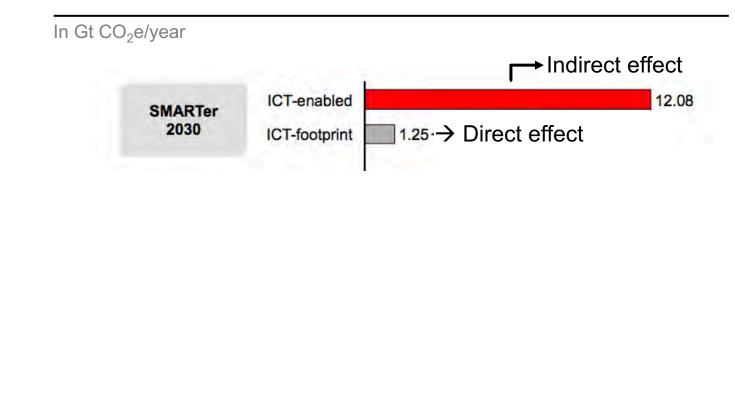
Rough estimation methods are applied for comparison of ICT use cases across application domains.

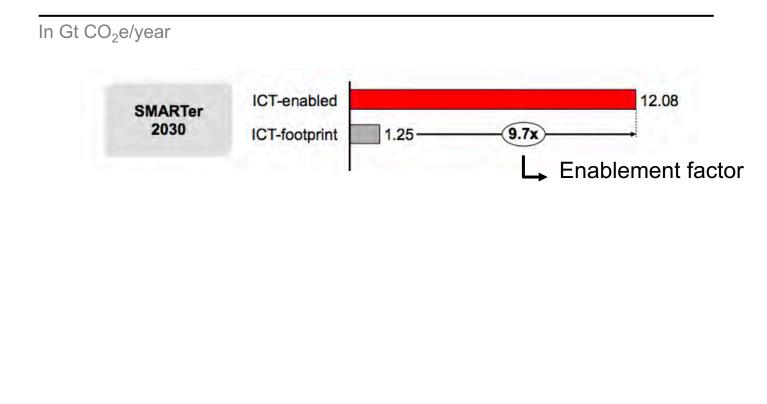
Approach	Advantages	Challenges
LCA	 Compare two product systems with each other and assess complexities of use cases Used to improve design of an ICT solution or derive policy recommendation at product level 	 Less focus on changes of consumption patterns Difficult to consider (dynamic) rebound effects High effort and data requirements → usually applied to few ICT use cases
Rough estimation method	 Rough comparative assessments of ICT use cases across application domains Low effort and few data per use case required 	 Assessments of various use cases often neglect interaction among use cases Difficult to consider (dynamic) rebound effects No insights into complexities of ICT use case



Study goal

- 1. Assessment of GHG footprint of global ICT sector
- Assessment of global GHG abatement potential of 12 ICT use cases (e.g. intelligent heating, route optimization,...)

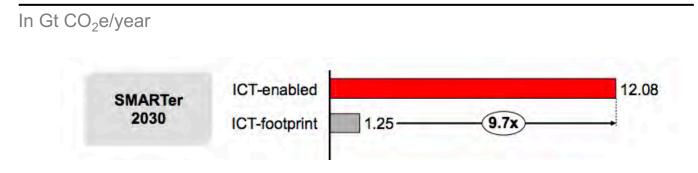

Global ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector


Global ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector

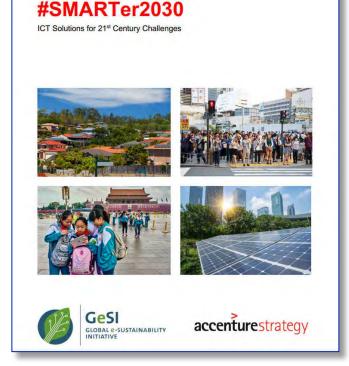
Global ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector

Exemplary industry estimation studies:

Enablement factors of telecommunication service providers


Company	Status-quo	Target	Company	Status-quo	Target
swisscom	1.2x	2x '25	中国移动 China Mobile	6.5x	10x
Ŧ··	1.7x	n/a	O NTT	9.5x	10x '31
вт	2.2x '17/'18	3x '17/'18	verizon	1.5x '16/'17	2x
vodafone	2.1x	n/a	Set AT&T	n/a	10x

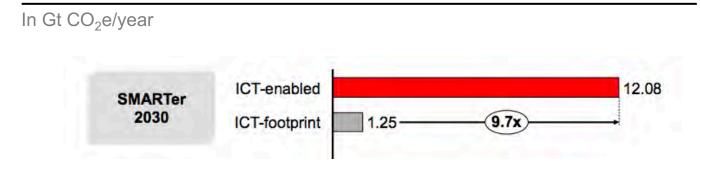
Exemplary estimation study: Switzerland 2025



Global ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector

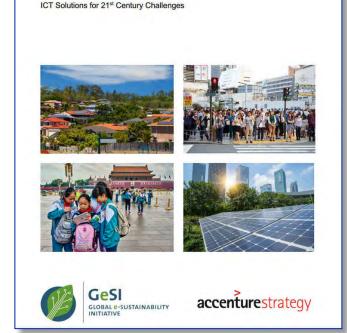
Question

- Are the assumptions valid and do they apply to Switzerland?



Exemplary estimation study: Switzerland 2025

Global ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector

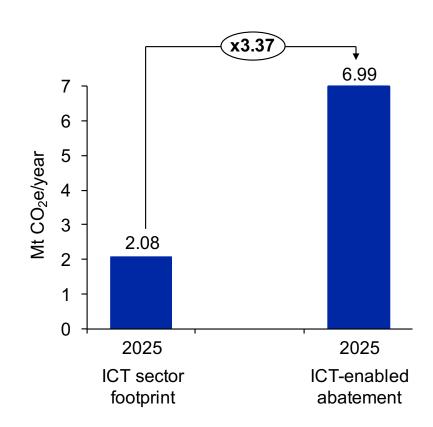


Question

- Are the assumptions valid and do they apply to Switzerland?

Approach

- We used the same calculation as the SMARTer 2030 study
- We re-assessed their assumptions about actual impacts of ICT, adoption rates of ICT solutions and rebound effects
- We adapted the used figures to Switzerland in 2025

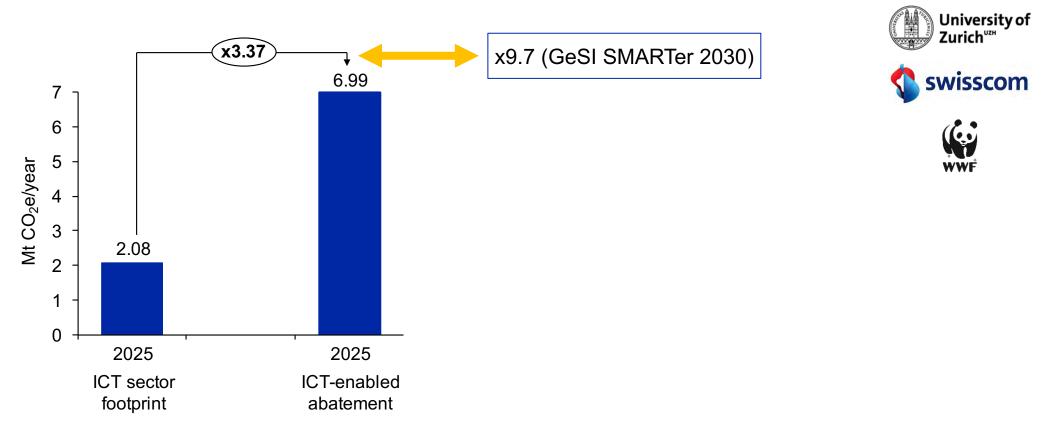


#SMARTer2030

In Switzerland in 2025, ICT can avoid up to 3.37 more GHG emissions than its own footprint.

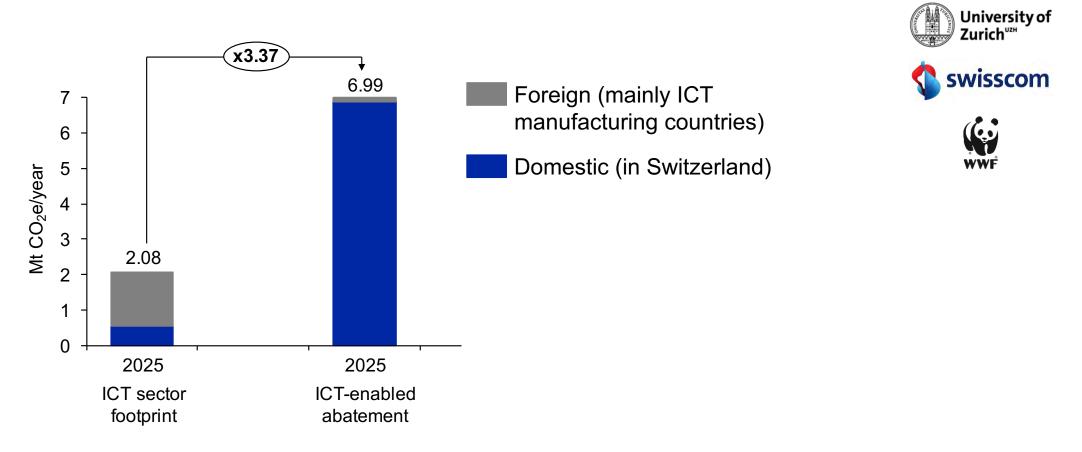
ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector in Switzerland (optimistic scenario)

In Mt CO₂e/year

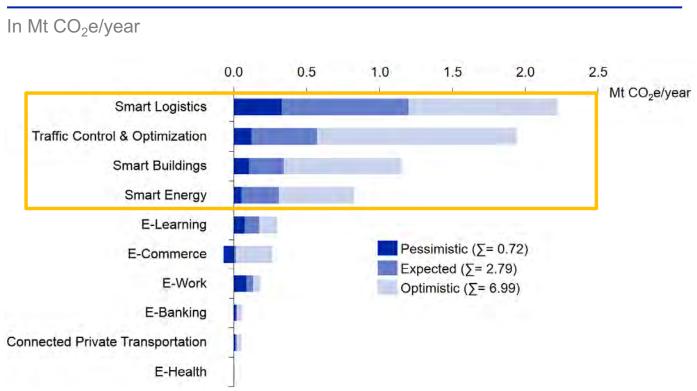


This factor is almost 3 times lower than the factor estimated in the SMARTer 2030 study.

ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector in Switzerland (optimistic scenario)


In Mt CO₂e/year

This factor is almost 3 times lower than the factor estimated in the SMARTer 2030 study.

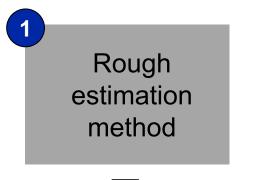

ICT-enabled GHG abatement potential vs. GHG footprint of the ICT-sector in Switzerland (optimistic scenario)

In Mt CO₂e/year

Largest ICT-enabled potentials to avoid GHG emissions in Switzerland are in the transport, building and energy sector.

ICT-enabled GHG abatement potential in Switzerland in 2025 by use case

Most effective ICT applications to reduce GHG emissions in Switzerland

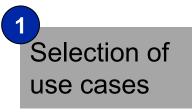

- 1. Less tonne and person kilometers (e.g. through virtual mobility)
- 2. More efficient use, heating and cooling of buildings (e.g. intelligent heating)
- 3. Flexibilization of electricity demand to increase share of renewable energies in electricity grid (e.g. demand side management)

Rough estimation methods are applied for comparison of ICT use cases across application domains.

Approach	Advantages	Challenges
LCA	 Compare two product systems with each other and assess complexities of use cases Used to improve design of an ICT solution or derive policy recommendation at product level 	 Less focus on changes of consumption patterns Difficult to consider (dynamic) rebound effects High effort and data requirements → usually applied to few ICT use cases
Rough estimation method	 Rough comparative assessments of ICT use cases across application domains Low effort and few data per use case required 	 Assessments of various use cases often neglect interaction among use cases Difficult to consider (dynamic) rebound effects No insights into complexities of ICT use case

Rough estimation methods should be used to identify opportunities and risks – LCA to improve specific ICT solutions.

Use for identifying opportunities and risks of digitalization and prioritize fields of action.


2 LCA (and other methods)

Use to design/improve products and policies which harness opportunities and mitigate risk in high-priority fields.

Agenda

- 1. What are ICT applications?
- 2. How are environmental effects of ICT applications assessed?
- 3. What are methodological challenges in the assessment?

Assessments of such kind face various methodological challenges.

Assessments focus on a (limited) selection of ICT use cases

How do we make sure our selection is unbiased?

ICT use changes consumption patterns

How do we account for changes in consumer behavior?

ICT use cases are embedded in complex socioeconomic systems

How do we account for dynamic system interactions?

ICT-enabled efficiency improvements can trigger additional consumption

Which rebound effects exist and how large are they in my specific study setting?

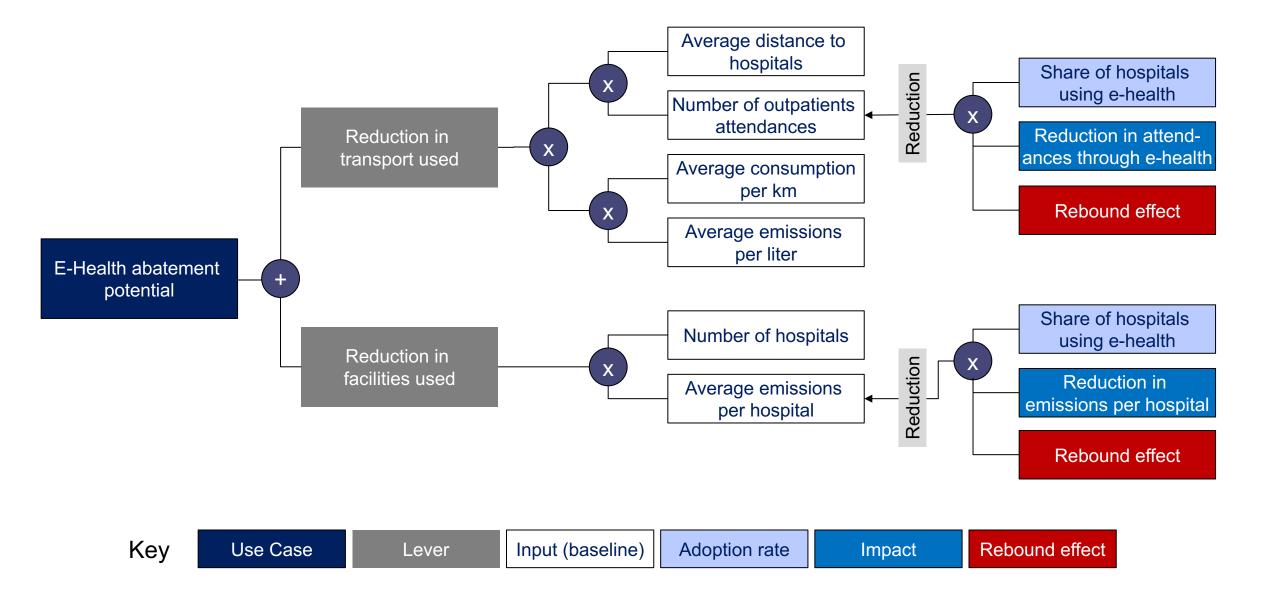
These (and more) challenges need to be considered in the assessment of indirect effects.

Conclusions.

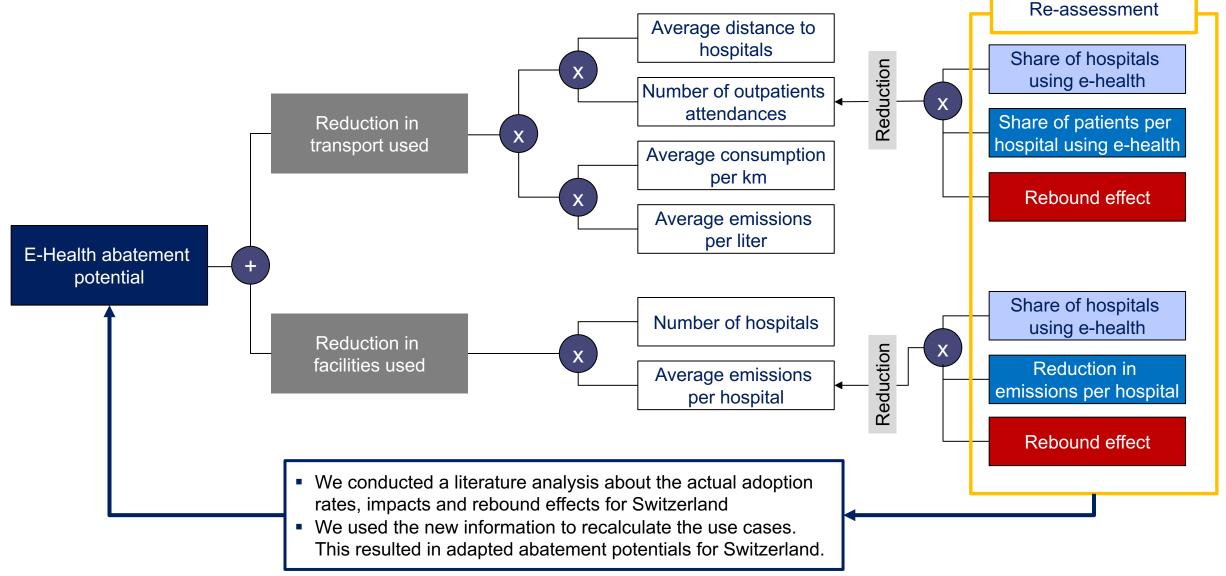
- 1. Indirect environmental effects of ICT are environmental effects of ICT application.
- 2. Assessments use different methods and face various methodological challenges.
- 3. Choice of method and consideration of methodological challenges influences results and their comparability.
- 4. Use rough estimations to prioritize fields of action. Use LCA (in combination with other methods) to show how we can realize the potentials on a product level.

Thank you for your kind attention!

Jan Bieser


E-Mail: jan.bieser@ifi.uzh.ch

References


- Bieser, J., & Hilty, L. (2018a). Assessing Indirect Environmental Effects of Information and Communication Technology (ICT): A Systematic Literature Review. Sustainability, 10(8), 2662. https://doi.org/10.3390/su10082662
- [2] Moberg, Å., Borggren, C., & Finnveden, G. (2011). Books from an environmental perspective—Part 2: E-books as an alternative to paper books. *The International Journal of Life Cycle Assessment*, 16(3), 238–246. https://doi.org/10.1007/s11367-011-0255-0
- [3] Coroama, V. C., Moberg, Å., & Hilty, L. M. (2015). Dematerialization Through Electronic Media? In Advances in Intelligent Systems and Computing 310. ICT Innovations for Sustainability (S. 405–421). Switzerland: Springer International Publishing.
- [4] GeSI. (2015). #SMARTer2030. ICT Solutions for 21st Century Challenges. Brussels, Belgium.
- [5] Bieser, J., & Hilty, L. (2018b). Indirect Effects of the Digital Transformation on Environmental Sustainability Methodological Challenges in Assessing the Greenhouse Gas Abatement Potential of ICT. In B. Penzenstadler, S. Easterbrook, C. Venters, & S. I. Ahmed (Hrsg.), *ICT4S2018. 5th International Conference on Information and Communication Technology for Sustainability* (S. 14). https://doi.org/10.29007/lx7q
- [6] Hilty, L., & Bieser, J. (2017). Opportunities and Risks of Digitalization for Climate Protection in Switzerland. Abgerufen von University of Zurich, website: http://www.zora.uzh.ch/id/eprint/141128/1/ Study_Digitalization_Climate_Protection _Oct2017.pdf
- [7] Hilty, L., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann, M., & Wäger, P. (2006). The relevance of information and communication technologies for environmental sustainability – A prospective simulation study. *Environmental Modelling & Software*, 21(11), 1618–1629. https://doi.org/10.1016/j.envsoft.2006.05.007

Backup

GeSI calculation of abatement potential, example use case: e-health

We challenged the adoption rate, impacts and rebound effects and thereby estimated new abatement potentials (example: e-health).

Source: [5]