Willkommen Welcome Bienvenue



### Identifying Suitable Indicators to Assess Supply Risks along the Supply Chain

#### 74th Swiss LCA Discussion Forum: LCA in the NRP 73

Marcus Berr, Roland Hischier, Patrick Wäger

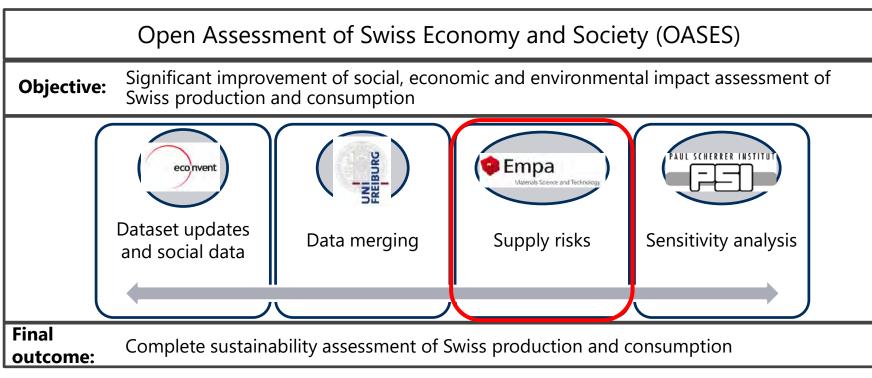
Technology & Society Laboratory (TSL), Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland marcus.berr@empa.ch





## Outline




- Introduction
- Methods and Materials
- Results and Discussion
- Conclusion
- References

#### 30/06/2020

FNSNF

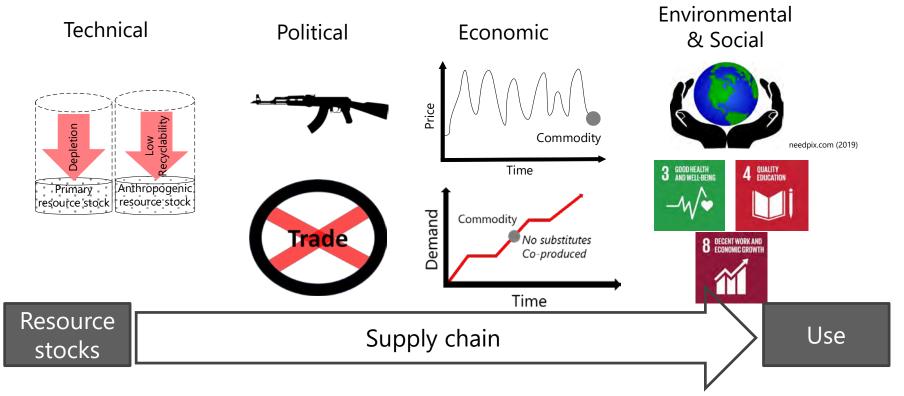
## Introduction Project Context

Swiss National Science Foundation





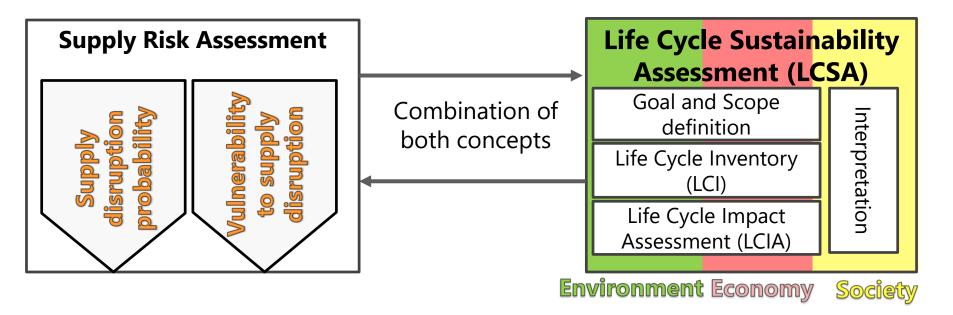
Sustainable Economy National Research Programme Introduction Reasons for supply risk




Please go to **menti.com** and type in the code: **503646** 



### Introduction Reasons for supply risk






#### Introduction Objective



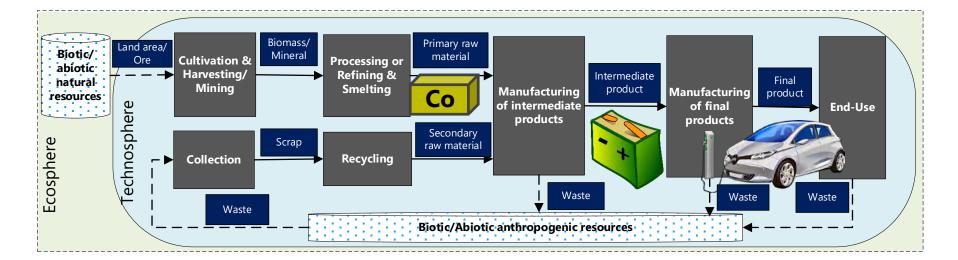
Identify suitable indicators to assess supply risks along the entire supply chain



#### Method and Materials Five step approach






Results and Discussion Frame (1)



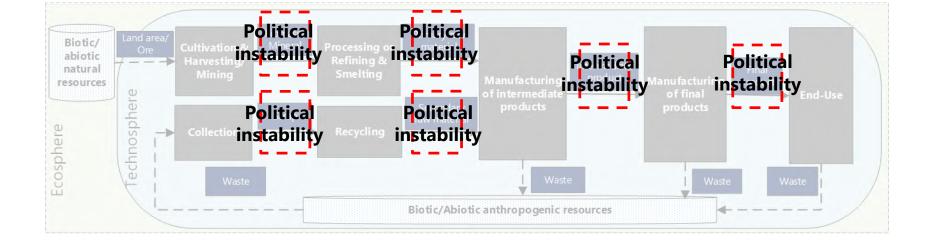
- General objective: Identify need for mitigation of risks along the supply chain
- <u>Specific objective</u>: Assess supply risks in the supply chain of cobalt (Co) used in batteries of electric cars
- System scope: Electric car purchased in Switzerland
- <u>Functional unit</u>: One electric car
- System boundary: Supply chain of cobalt (Co) used in batteries of electric cars
- Impact category: Supply risk due to political instability
- Time horizon: 5 years



#### Results and Discussion Frame (2)



 Compile and quantify physical and economic inventory flows throughout the supply chain

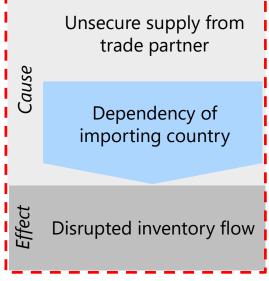

Empa

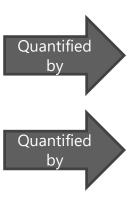
Materials Science and Technology

#### 30/06/2020

#### Results and Discussion Frame (3)

Impact category: Supply risk due to political instability




# Cause-effect chain for supply disruption probability:

Frame (4)

**Results and Discussion** 





Probability indicator

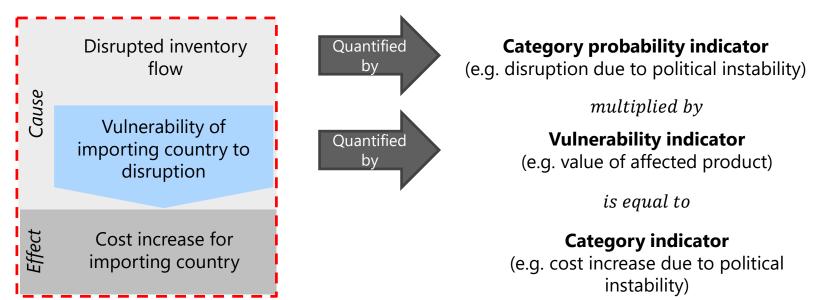
(e.g. fragility in legal system)

multiplied by

#### Mediating probability indicator (e.g. import share)

is equal to

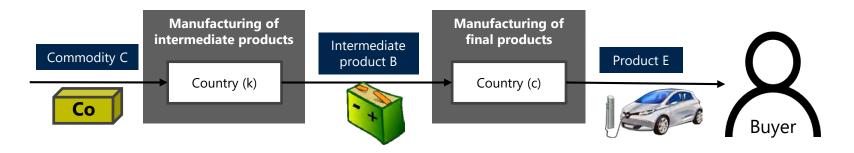
#### Category probability indicator


(e.g. disruption due to political instability)



# Results and Discussion Frame (5)




#### Cause-effect chain for vulnerability to supply disruption:



# Results and Discussion Frame (5)



#### <u>Calculation of category indicator result for the example of political instability</u> <u>in the supply of Intermediate product B:</u>



Cost increase due to political instability  $_{B,E,c} =$ 

value added \* fragility in legal system \* import share \* value of affected product

#### Results and Discussion Frame (6)

- Identification of relative supply risk of commodities and (intermediate) products within the supply chain
- Identification of commodity or (intermediate) product flow with the highest need for risk mitigation





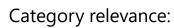
#### Results and Discussion Review & Collect

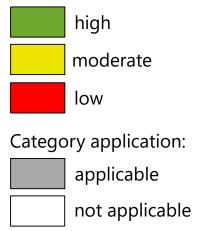


#### Review of:

- 53 individual supply risk methodologies
- additional (review) articles and reports




- Over 50 probability indicators
- Over 20 mediating probability indicators
  - Over 10 vulnerability indicators


#### Results and Discussion Evaluate (1)

- Evaluating the <u>relevance of impact categories</u> for a supply risk assessment
- Evaluating the <u>application of impact categories</u> along the supply chain

| Impact category                          | Category relevance |                     | Category application* |    |     |    |    |    |    |    |
|------------------------------------------|--------------------|---------------------|-----------------------|----|-----|----|----|----|----|----|
|                                          | Based on frequency | Based on literature | L/O                   | Wa | B/M | Sc | PR | SR | IP | FP |
| Supply risk due to political instability |                    |                     |                       |    |     |    |    |    |    |    |

\*Abbreviations of inventory flows along the supply chain: L/O: Land area/Ore, Wa: Waste, B/M: Biomass/ Mineral, Sc: Scrap, PR: Primary raw material, SR: Secondary raw material, IP: Intermediate product, FP: Final product







#### Results and Discussion Evaluate (2) – on-going work



 Evaluating the <u>suitability of indicators</u> in view of an integration in the established framework:

|                              | Indicator suitability |          |                       |                    |         |  |  |
|------------------------------|-----------------------|----------|-----------------------|--------------------|---------|--|--|
| Indicator                    | Indicator             | Time     | Data                  | Commodity          | System  |  |  |
|                              | adequacy              | horizon* | utilization           | scope              | scope** |  |  |
| Fragility in legal<br>system |                       | S        |                       |                    |         |  |  |
| Import share                 |                       | S        | Quantitati<br>ve data | Biotic and abiotic |         |  |  |
| Value of affected<br>product |                       | s/m      |                       |                    | p, e, c |  |  |

Indicator adequacy:

(the degree to which the indicator covers and contributes to the required topic)

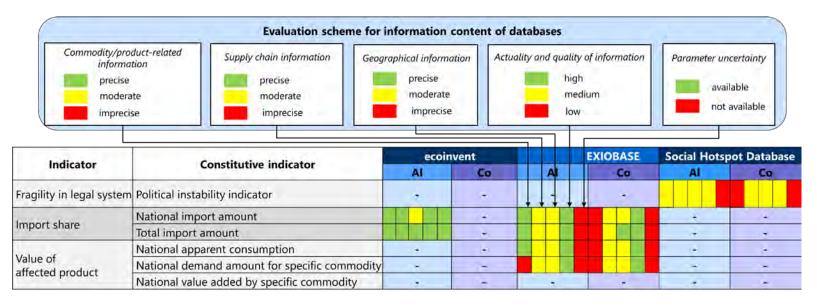


\*s: short-term, m: medium term, l: long-term; \*\*p: product-level, e: economy-level, c: company-level

### Results and Discussion Classify – on-going work



#### Evaluation results reveal that...

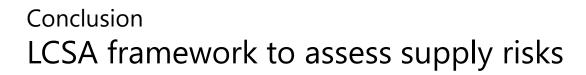

- 8 probability indicators ('fragility in legal system', 'Trading across Borders Indicator', 'historical price volatility', 'recycling share', 'raw material/energy consumption', 'child labor, excessive overtime & high conflicts', 'annual loss through floods, tsunami, earthquake', 'CO2 growth rate, tree cover loss, terrestrial/marine protected areas')
- 3 mediating probability indicators ('Kwoka's Dominance Index', 'import share', 'domestic supply') and
- 3 vulnerability indicators ('value of affected product', 'demand to supply ratio', 'price sensitivity')

... are suitable for an integration in the established LCSA framework.

### Results and Discussion Quantify (1)



 <u>Data coverage of the constitutive indicator(s) of each indicator by</u> the LCA Databases, ecoinvent, EXIOBASE, Social Hotspot Database:




## Conclusion Quantify (2)



#### How can missing data be acquired?

| Indicator                                                               | Constitutive indicator                      | Additional potential data sources                                        |  |  |
|-------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|--|--|
| Fragility in legal<br>system                                            | Political instability indicator             | e.g. Worldwide Governance<br>Indicators                                  |  |  |
| Import share of<br>trade partners<br>Value added of<br>affected product | National primary commodity import amount    | e.g. UN Comtrade, Material<br>flow analysis studies,<br>industry reports |  |  |
|                                                                         | Total primary commodity import amount       |                                                                          |  |  |
|                                                                         | National apparent consumption               |                                                                          |  |  |
|                                                                         | National demand amount for specific product |                                                                          |  |  |
|                                                                         | National value added by specific product    | e.g. OECD database, market or industry reports                           |  |  |





- Integration of supply risk indicators into a Life Cycle Sustainability Assessment framework facilitates assessing supply risks along an entire supply chain.
- Assessing supply risks along the entire supply chain is especially relevant for products with long supply chains (such as electric cars).
- There is a need for data acquisition in LCA databases to support the supply risk assessment along the entire supply chain.
- On-going work strives at identifying indicators that allow for assessing potential technical, political, economic, social and environmental supply risks within an LCSA framework.

## References



- Cimprich, A., et al. (2017b). "Extension of geopolitical supply risk methodology: Characterization model applied to conventional and electric vehicles." Journal of Cleaner Production 162: 754-763.
- Cimprich, A., et al. (2019). "Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product-level supply risk assessment." <u>Journal of Industrial Ecology</u> **0**(0).
- Dewulf, J., et al. (2016). "Criticality on the international scene: Quo vadis?" <u>Resources Policy</u> **50**: 169-176.
- Glöser, S., et al. (2015). "Raw material criticality in the context of classical risk assessment." <u>Resources Policy</u> 44: 35-46.
- Liu, G. and D. B. Muller (2013). "Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis." <u>Environ Sci Technol</u> **47**(20): 11873-11881.
- needpix.com (2019) <u>https://www.needpix.com/photo/512779/hands-keep-globe-protection-earth-protect-environmental-protection-responsibility-nature-conservation</u>: "Hands Keep Globe Free Photo" by diema. Licence: <u>Public Domain</u> (last accessed 09/06/2020)
- Norris, C. and G. Norris (2015). Chapter 8: The Social Hotspots Database Context of the SHDB: 52-73.
- Schrijvers, D., et al. (2019). "A review of methods and data to determine raw material criticality." <u>Resources, Conservation and Recycling</u>.
- UNEP (2011a). Towards a Life Cycle Sustainability Assessment: Making Informed Choices on Products. UNEP/SETAC Life Cycle Iniative. Paris, France: United Nations Environment Programma (UNEP).
- Weidema, B., et al. (2013). Overview and methodology. Data quality guideline for the ecoinvent database version 3.
- Wood, R., et al. (2015). "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis." <u>Sustainability</u> 7(1): 138.
- Zörb, C., et al. (2018). Biobased Resources and Value Chains. <u>Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy</u>. I. Lewandowski. Cham, Springer International Publishing: 75-95.

## Questions?





## Thank you for your attention!

#### Marcus Berr

<u>marcus.berr@empa.ch</u> Advancing Life Cycle Assessment (ALCA) Group Technology & Society Laboratory Empa St. Gallen Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland https://www.empa.ch/web/s506