

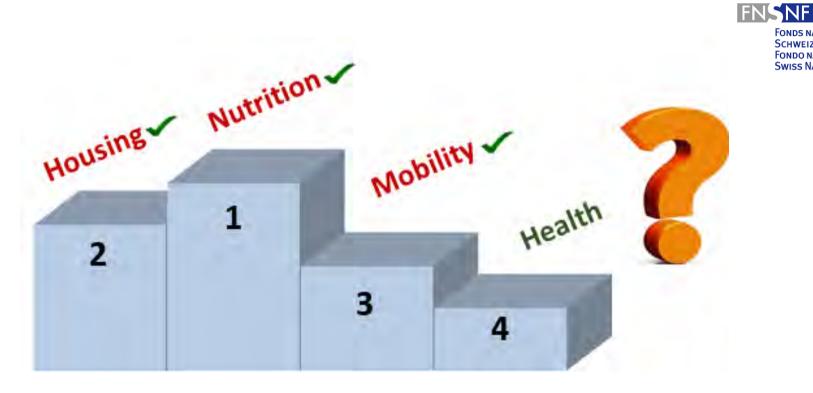
Sustainable Economy National Research Programme Life Sciences and Facility Management

Zurich University of Applied Sciences

Bringing green best-practice into hospitals with an LCA approach

Karen Muir, Regula Keller & Matthias Stucki Life Cycle Assessment Research Group

Institute of Natural Resource Sciences (IUNR) Zurich University of Applied Sciences (ZHAW)

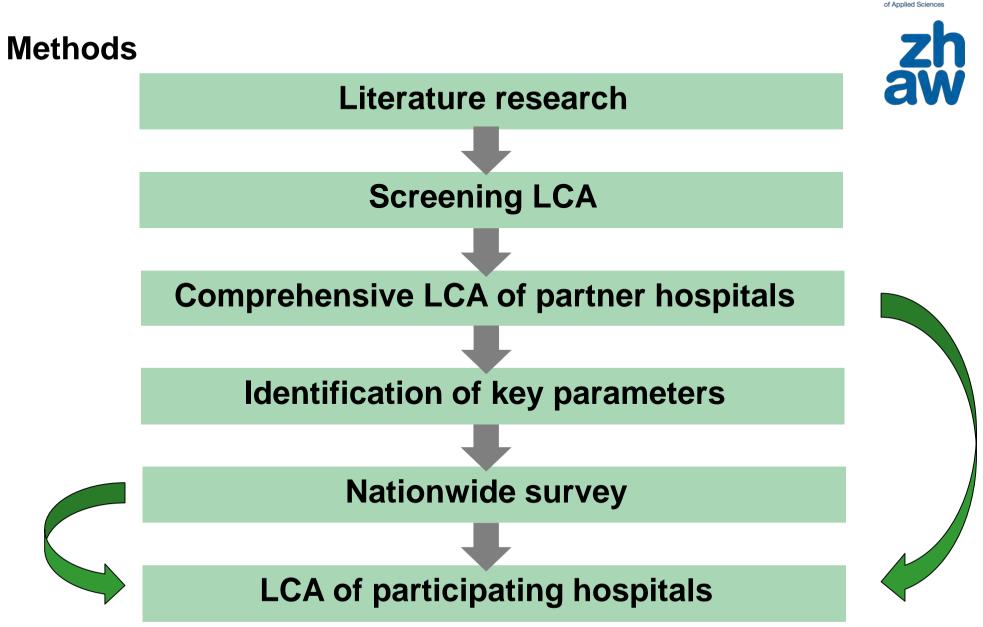

Discussion Forum Nr. 74 29th June 2020, online

Zurich University of Applied Sciences

Green Hospital Project

• 4 year project (2017-2021) of the NFP 73 Programme "Sustainable Economy"

Project goals


Zurich University of Applied Sciences

- Develop comprehensive knowledge on resource consumption and efficiency in Swiss hospitals
- Analyse life cycle environmental impacts in hospitals
- Identify environmental **best practices** and investigate the currently **realisable options**
- Test hands-on applications for environmentally optimised processes

Zurich University of Applied Sciences

Zurich University of Applied Sciences

Data available & modelling approaches

Type of data available		Examples, data collected		Modelling approach
Specific, detailed	Background data available	• Wa	iter use: litre	No special steps needed
	No suitable background data		sposable gloves : quantity naterial	Production of new datasets
Specific, not detailed			ilding infrastructure: ergy reference area	Various approaches
Indirect data		• Pha	armaceuticals: CHF	Various approaches
No data		• Wa	iste water: none	Extrapolation, standard composition used

Modelling approaches

Building infrastructure

- Background dataset unsuitable
- Approaches considered:
 - Adapt existing LCI data: elderly home, abroad, hotel, other nondomestic building
 - Construction invoices
 - Documents from tenders
 - Architects: project documents, Building Information Modelling (BIM) software

Pharmaceuticals

- Few background data, many different drugs
- Approaches considered:
 - Using results provided in the literature (limited indicators)
 - Approximation based on expenditure
 - Modelling API by adapting LCI-dataset "fine chemical"
 - Analysis of active pharmaceutical ingredient (API) per expenditure
 - Using impact of economic sector based on EEIOT

Impact assessment methods

Ecological scarcity method 2013, v.1.06

(Frischknecht et al., 2013)

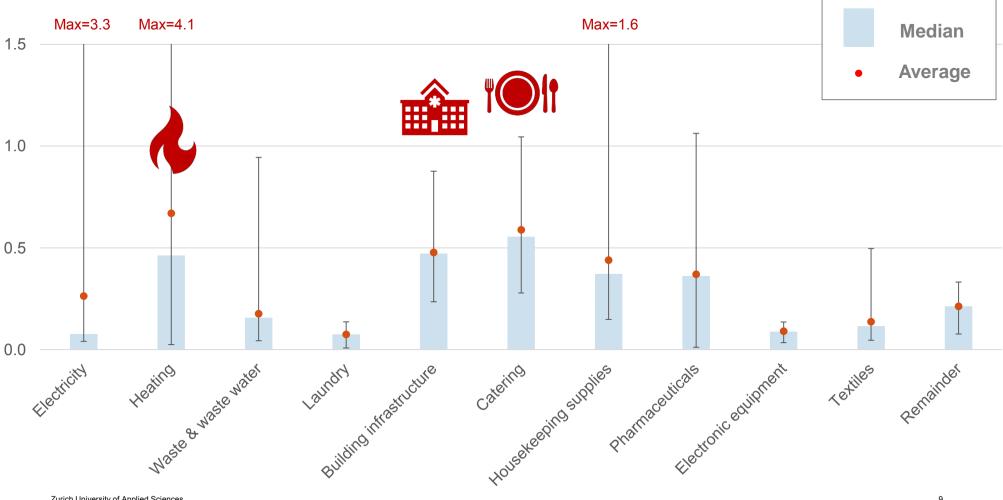
Global Warming Potential 100 years (*IPCC, 2013*)

Environmental Footprint 2018, 11 midpoints

(Fazio et al., 2018)

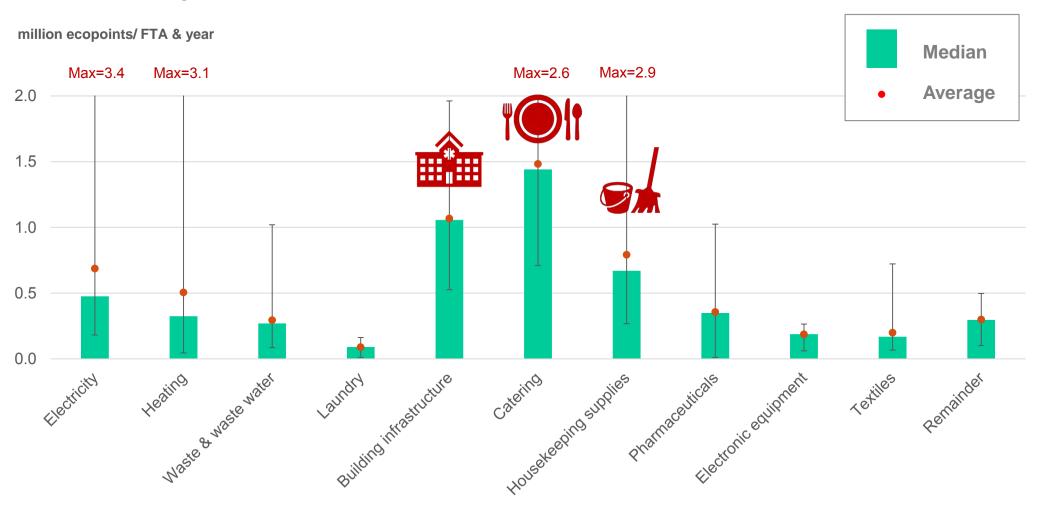
Ozone depletion; human toxicity; particulate matter (PM) / respiratory inorganics; ionising radiation; photochemical ozone formation; acidification; eutrophication, terrestrial; eutrophication, aquatic; ecotoxicity, freshwater; land use

Not included in this presentation



9

t CO₂eq/ FTE & year


Zurich University of Applied Sciences

Global warming potential (IPCC, 2013)

Zurich University of Applied Sciences

Environmental impact according to the Ecological Scarcity Method (Frischknecht et al., 2013)

Next steps

- Extrapolation of survey results to quantify the environmental impact of all Swiss hospitals.
- Econometric analysis: analysis of environmental and financial efficiency.
- Application of a newly developed functional unit
 - Existing FUs (FTE, patient days) do not sufficiency consider inpatient & outpatient treatment.
 - New FU: standardised revenue.
 - Aggregation into a single measure of hospital output.

Using LCA in the hospital sector for a sustainable economy

- How can decision makers use LC-based approaches?
 - Priorities based on concrete hotspots
 - LCA-benchmarking, competitors provide motivation
- Which LC-based approaches are best suited?
 - Analyses of complex sectors:
 - Multi-stage analyses.
 - Combining bottom-up analyses with extrapolation.
 - No one-size-fits-all solutions.
 - Comparison of existing options in an LCA case study.
 - Key parameter model \rightarrow use insights for other cases.

• Instruments that combine environmental, economic & societal aims:

- Combine different disciplines, i.e. process optimisation & LCA.
- Show economic & social benefits of environmental optimisation.

Conclusions

- Hospitals are highly complex, highly regulated with various environmental impacts.
- High variability of resource intensity & environmental impact per FTE implies a large potential for environmental optimisation.
- 3. Environmental hotspots of Swiss hospitals are: catering, building infrastructure, housekeeping supplies, & energy provision.
- 4. A successful sustainability strategy needs to generate:
 - environmental benefits
 - additional value for stakeholders.

Questions?

Karen Muir, Regula Keller & Matthias Stucki

Life Cycle Assessment Research Group Institute of Natural Resource Sciences ZHAW Zurich University of Applied Sciences Grüental, Postfach, CH-8820 Wädenswil

Tel.: +41 58 934 54 56 E-Mail: <u>karen.muir@zhaw.ch</u> Internet: <u>www.zhaw.ch/iunr/lca/</u> Facebook: <u>www.facebook.com/ZHAWLCA</u> Website: <u>www.greenhospital.ch</u>

Zurich University

Life Cycle Assessment Rohstoffabbau > Herstellung > Nutzung > Entsorgung | Recycling

Zurich University of Applied Sciences

Acknowledgements

 This research project is part of the National Research Programme "Sustainable Economy: resource-friendly, future-oriented, innovative" (NRP 73) of the Swiss National Science Foundation (SNSF).

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Sustainable Economy National Research Programme

Bibliography

- ecoinvent Centre. (2018). Ecoinvent Data v3.5. Zürich: ecoinvent Centre, the Swiss Centre for Life Cycle Inventories.
- Fazio, S., Castellani, V., Sala, S., Schau, E., Zampori, L., & Diaconu, E. (2018). Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Method. Ispra, Italy: European Commission, Joint Research Centre, Institute for Environment and Sustainability.
- Frischknecht, R., Büsser Knöpfel, S., Flury, K., Stucki, M., & Ahmadi, M. (2013). Swiss Eco-Factors 2013 According to the Ecological Scarcity Method. Methodological Fundamentals and Their Application in Switzerland (Umwelt-Wissen Nr. 1330) (p. 256). Berne: Federal Office for the Environment.
- IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
- Jungbluth, N., Nathani, C., Stucki, M., and Leuenberger, M. (2011). Environmental impacts of Swiss consumption and production: a combination of input-output analysis with life cycle assessment (Bern, CH: ESU-services Ltd. & Rütter+Partner, commissioned by the Swiss Federal Office for the Environment).