Greendelta

sustainability consulting + software

Addressing data quality challenges for Open Source LCA software developers

77th LCA Discussion Forum

April 21, 2021

Dr. Andreas Ciroth

Green Delta GmbH

Content

- "open source LCA" = openLCA
- Data quality: some notes
- How data quality is addressed in openLCA
- Outlook

"open source LCA" = openLCA

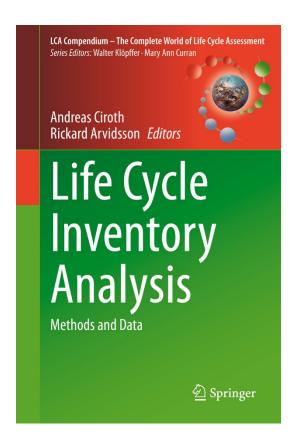
(for this presentation)

- openLCA: powerful, versatile, free and open source LCA and sustainability assessment software, developed by GreenDelta since 2007
- www.openLCA.org
- Most users worldwide of all LCA software systems (we think..), growing
- But of course:
 - "SimaProis the leading LCA software solution" https://simapro.com/about/)
 - "GaBiist die meist verwendete Nachhaltigkeitssoftware für die Ökobilanzierung von Produkten"

(http://www.gabi -software.com/deutsch/software/gabi -software/)

Data quality

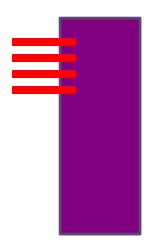
(some notes)


- ISO 14040: fit for purpose
- For datasets, two faces:
 - When creating the dataset
 - When using the dataset

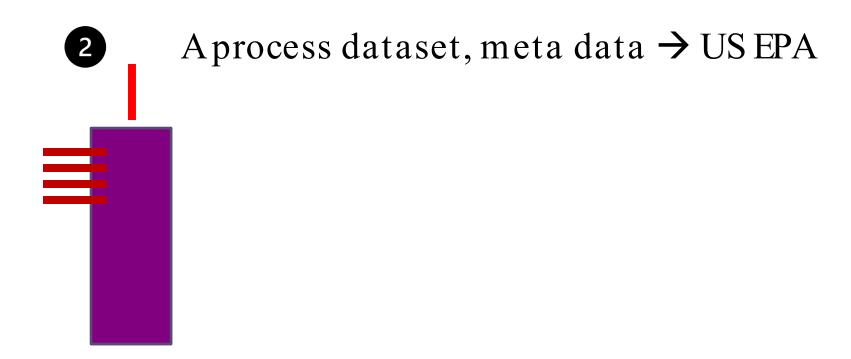
(→ Janus face)

Ciroth, A.: Data Quality, ch. 5 in Life Cycle Inventory Analysis, Ciroth / Arvidsson (edts.), Springer, 2021

(data quality, some more details)

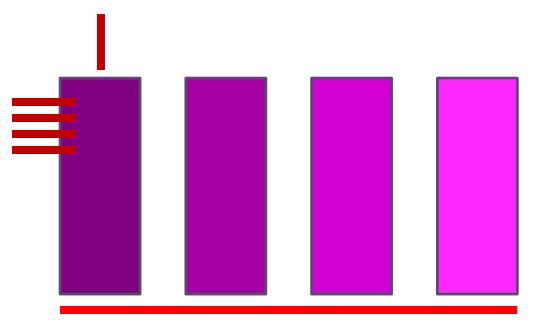


1	Introduction to "Life Cycle Inventory Analysis"	1
2	Principles of Life Cycle Inventory Modeling: The Basic Model, Extensions, and Conventions Andreas Ciroth, Francesca Recanati, and Rickard Arvidsson	15
3	Development of Unit Process Datasets Xiaojin Zhang, Hongtao Wang, and Karin Treyer	53
4	Multifunctionality in Life Cycle Inventory Analysis: Approaches and Solutions Jeroen Guinée, Reinout Heijungs, and Rolf Frischknecht	73
5	Data Quality in Life Cycle Inventories	97
6	Life Cycle Inventory Data and Databases Andreas Ciroth and Salwa Burhan	123
7	Algorithms of Life Cycle Inventory Analysis	149
8	Inventory Indicators in Life Cycle Assessment	171
9	The Link Between Life Cycle Inventory Analysis and Life Cycle Impact Assessment Jutta Hildenbrand and Rickard Arvidsson	191
Glo	ossary	205
Ind	lex	207


Data quality indicators from the database are not the full picture

- Different application cases (different location, reference year, carbon accounting method, ..)
- Inter-dataset inconsistency cannot be documented per dataset
- E.g., ecoinvent: tyre wear emissions not provided for some street transport processes

1 All the exchanges of a unit process \rightarrow ecoinvent



a unit process dataset

a unit process dataset

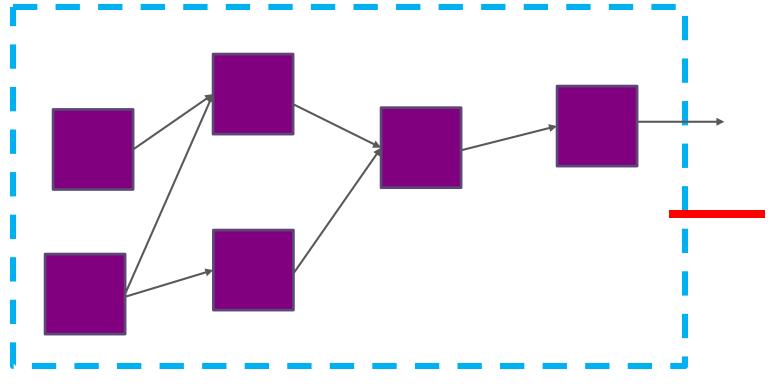
A process dataset against other process datasets (→ UN GLAD; underdeveloped)

unit process datasets

E.g., ecoinvent: tyre wear emissions not provided for some street transport processes

- Provided

RESULTING NAME 787cc269-d2 transport, freight, light commercial vehicle, EURO1 | transport, freight, light commercial vehicle, EURO1 | tyre wear emissions, lorry 0 0 00012 0.00012 01ed5770-6e transport, freight, light commercial vehicle, EURO2 | transport, freight, light commercial vehicle, EURO2 | tyre wear emissions, lorry 0.00012 05610e24-bd transport, freight, light commercial vehicle, unregulated | transport, freight, light commercial vehicle, un tyre wear emissions, lorry 5f2a6b26-e6 transport, freight, lorry >32 metric ton, EURO1 | transport, freight, lorry >32 metric ton, EURO1 | APOS, U | tyre wear emissions, lorry 0 0.00015 701e35e4-cf (transport, freight, lorry >32 metric ton, EURO2 | transport, freight, lorry >32 metric ton, EURO2 | APOS, U | tyre wear emissions, lorry 0 0.00015 ce6e018b-7e transport, freight, lorry >32 metric ton, EURO3 | transport, freight, lorry >32 metric ton, EURO3 | APOS, U | tyre wear emissions, lorry 0.00017 e1221084-74 transport, freight, lorry >32 metric ton, EURO3 | transport, freight, lorry >32 metric ton, EURO3 | APOS, U | tyre wear emissions, lorry 0 0.00017 75d202a1-36 transport, freight, lorry >32 metric ton, FURO4 L transport, freight, lorry >32 metric ton, FURO4 L APOS, U Lityre wear emissions, lorry 0.00017 7da22b9f-1d transport, freight, lorry >32 metric ton, EURO4 | transport, freight, lorry >32 metric ton, EURO4 | APOS, U | tyre wear emissions, lorry 3269857a-c4 transport, freight, lorry >32 metric ton, EURO5 | transport, freight, lorry >32 metric ton, EURO5 | APOS, U | tyre wear emissions, lorry c9fd3466-f9d transport, freight, lorry >32 metric ton, EURO5 | transport, freight, lorry >32 metric ton, EURO5 | APOS, U | tyre wear emissions, lorry 6b5a38b3-a2 transport, freight, lorry >32 metric ton, EURO6 | transport, freight, lorry >32 metric ton, EURO6 | APOS, U | tyre wear emissions, lorry 0 0.00017 75dc856f-77(transport, freight, lorry >32 metric ton, EURO6 | transport, freight, lorry >32 metric ton, EURO6 | APOS, U | tyre wear emissions, lorry 0 0.00017 bf5b888b-f3(transport, freight, lorry >32 metric ton, unregulated | transport, freight, lorry >32 metric ton, unregulated tyre wear emissions, lorry 0 0.00015 e957817b-07 transport, freight, lorry 16-32 metric ton, EURO1 | transport, freight, lorry 16-32 metric ton, EURO1 | APOS tyre wear emissions, lorry 0 0.00015 cf7a1c7c-86a transport, freight, lorry 16-32 metric ton, EURO2 | transport, freight, lorry 16-32 metric ton, EURO2 | APOS tyre wear emissions, lorry 0 0.00015 b4694c1f-1e transport, freight, lorry 16-32 metric ton, EURO3 | transport, freight, lorry 16-32 metric ton, EURO3 | APOS tyre wear emissions, lorry 0 0.00022 f016da42-5a|transport, freight, lorry 16-32 metric ton, EURO3 | transport, freight, lorry 16-32 metric ton, EURO3 | APOS tyre wear emissions, lorry 0 0.00022 bf581918-63 transport, freight, lorry 16-32 metric ton, EURO4 | transport, freight, lorry 16-32 metric ton, EURO4 | APOS tyre wear emissions, lorry 0 0.00022 f2126b22-11 transport, freight, lorry 16-32 metric ton, EURO4 | transport, freight, lorry 16-32 metric ton, EURO4 | APOS tyre wear emissions, lorry 0 0.00022 38080e54-40 transport, freight, lorry 16-32 metric ton, EURO5 | transport, freight, lorry 16-32 metric ton, EURO5 | APOS tyre wear emissions, lorry 0.00022 0 0.00022 f3be48e9-5e|transport, freight, lorry 16-32 metric ton, EURO5 | transport, freight, lorry 16-32 metric ton, EURO5 | APOS tyre wear emissions, lorry 521af975-9d (transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | APOS tyre wear emissions, lorry 0 0.00022 e637f3b5-efstransport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | APOS tyre wear emissions, lorry 0 0.00022 534542d3-ef transport, freight, lorry 16-32 metric ton, unregulated | transport, freight, lorry 16-32 metric ton, unregulatyre wear emissions, lorry 0 0.00015 15dd71f0-e2 transport, freight, lorry 3.5-7.5 metric ton, EURO1 | transport, freight, lorry 3.5-7.5 metric ton, EURO1 | AP(tyre wear emissions, lorry 0 0.00015 kg 7f25c285-2f2 transport, freight, lorry 3.5-7.5 metric ton, EURO2 | transport, freight, lorry 3.5-7.5 metric ton, EURO2 | AP(tyre wear emissions, lorry 0 0.00015 kg 2238405f-3cd transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | AP(tyre wear emissions, lorry 0 0.00041 kg c9cf9325-786 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | AP(tyre wear emissions, lorry kg c32e3e7b-8c transport, freight, lorry 3.5-7.5 metric ton, EURO4 | transport, freight, lorry 3.5-7.5 metric ton, EURO4 | AP(tyre wear emissions, lorry 0 0.00041 kg e93789fa-88 transport, freight, lorry 3.5-7.5 metric ton, EURO4 | transport, freight, lorry 3.5-7.5 metric ton, EURO4 | AP tyre wear emissions, lorry 0 0.00041 kg 34c9c939-acf transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | AP tyre wear emissions, lorry 0 0.00041 kg ce389875-84 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | AP(tyre wear emissions, lorry 0 0.00041 kg 108f29a6-c07 transport, freight, lorry 3.5-7.5 metric ton, EURO6 | transport, freight, lorry 3.5-7.5 metric ton, EURO6 | AP(tyre wear emissions, lorry 0 0.00041 7db2ba74-27 transport, freight, lorry 3.5-7.5 metric ton, EURO6 | transport, freight, lorry 3.5-7.5 metric ton, EURO6 | AP(tyre wear emissions, lorry 0 0.00041 eafe548d-c2 transport, freight, lorry 3.5-7.5 metric ton, unregulated | transport, freight, lorry 3.5-7.5 metric ton, unreg(tyre wear emissions, lorry 0 0.00015 65fee428-93 transport, freight, lorry 7.5-16 metric ton, EURO1 | transport, freight, lorry 7.5-16 metric ton, EURO1 | APO tyre wear emissions, lorry 0 0.00015 7efb62b5-56 transport, freight, lorry 7.5-16 metric ton, EURO2 | transport, freight, lorry 7.5-16 metric ton, EURO2 | APO tyre wear emissions, lorry 0 0.00015 1174e725-27 transport, freight, lorry 7.5-16 metric ton, EURO3 | transport, freight, lorry 7.5-16 metric ton, EURO3 | APO tyre wear emissions, lorry 0.00023 3b2d90ac-44 transport, freight, lorry 7.5-16 metric ton, EURO3 | transport, freight, lorry 7.5-16 metric ton, EURO3 | APO tyre wear emissions, lorry 0 0.00023 1f9c33a7-1ct transport, freight, lorry 7.5-16 metric ton, EURO4 | transport, freight, lorry 7.5-16 metric ton, EURO4 | APO tyre wear emissions, lorry 0.00023 71968ccf-e7 transport, freight, lorry 7.5-16 metric ton, EURO4 | transport, freight, lorry 7.5-16 metric ton, EURO4 | APO tyre wear emissions, lorry 0 0.00023 5a776197-f5¢transport, freight, lorry 7.5-16 metric ton, EURO5 | transport, freight, lorry 7.5-16 metric ton, EURO5 | APO tyre wear emissions, lorry 0 0.00023 646d4962-40 transport, freight, lorry 7.5-16 metric ton, EURO5 | transport, freight, lorry 7.5-16 metric ton, EURO5 | APO tyre wear emissions, lorry 0 0.00023 kg 04275777-30 transport, freight, lorry 7.5-16 metric ton, EURO6 | transport, freight, lorry 7.5-16 metric ton, EURO6 | APO tyre wear emissions, lorry 0 0.00023 kg 5e477fc4-c9(transport, freight, lorry 7.5-16 metric ton, EURO6 | transport, freight, lorry 7.5-16 metric ton, EURO6 | APO tyre wear emissions, lorry kg 5aa00730-41 transport, freight, lorry 7.5-16 metric ton, unregulated | transport, freight, lorry 7.5-16 metric ton, unregul tyre wear emissions, lorry 0 0.00015 6d57f164-feetransport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO3, carbon dioxide, liquid refrigerant, tyre wear emissions, lorry 0 0.00041 kg 81ec65fc-97f transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO3, carbon dioxide, liquid refrigerant, tyre wear emissions, lorry 0 0.00041 04d75b5a-73 transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO3, R134a refrigerant, cooling | transp tyre wear emissions, lorry 0 0.00041 kg 0 0.00041 8bddb73a-d|transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO3, R134a refrigerant, freezing | trans tyre wear emissions, lorry ee533d89-c9 transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO4, carbon dioxide, liquid refrigerant, tyre wear emissions, lorry 0 0.00041 0 0.00041 bdafa55e-91 transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO4, carbon dioxide, liquid refrigerant, tyre wear emissions, lorry 0.00041 a39db7d2-52 transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO4, R134a refrigerant, cooling | transp tyre wear emissions, lorry 9fbefc3f-155 transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO4, R134a refrigerant, freezing | trans tyre wear emissions, lorry 0 0 00041 426e8a9f-ce transport, freight, lorry with refrigeration machine, 3.5-7.5 ton, EURO5, carbon dioxide, liquid refrigerant, tyre wear emissions, lorry 0.00041


not provided

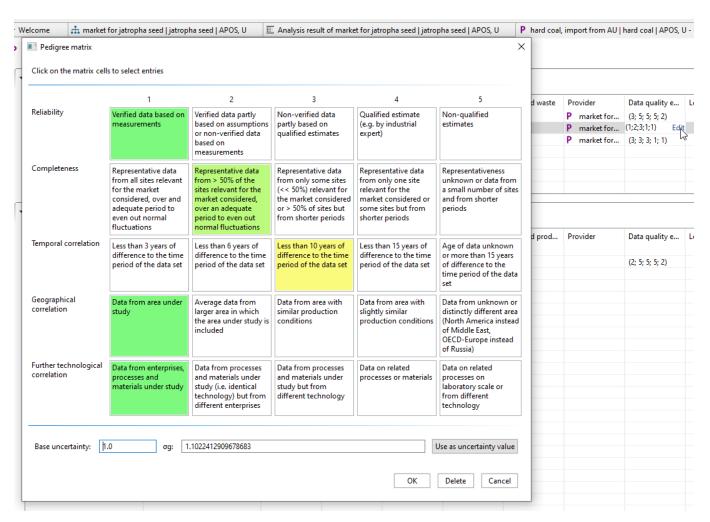
DDEE

-	PREF	PNAME
	b37c148e-02	transport, freight, light commercial vehicle transport, freight, light commercial vehicle A
	d57266c2-1a	transport, freight, light commercial vehicle transport, freight, light commercial vehicle A
	10138d21-da	transport, freight, light commercial vehicle transport, freight, light commercial vehicle A
	ccc7ed67-e5	transport, freight, lorry 28 metric ton, vegetable oil methyl ester 100% transport, freight, l
	584fc575-b19	transport, freight, lorry 28 metric ton, vegetable oil methyl ester 100% transport, freight, l
-	4335ccbb-b1	transport, passenger coach transport, passenger coach APOS, U
	ff5ef059-858	transport, passenger coach transport, passenger coach APOS, U
	b7c613d6-f13	transport, passenger, bicycle transport, passenger, bicycle APOS, U
	6faf8b3e-33a	transport, passenger, bicycle transport, passenger, bicycle APOS, U
	ed88c010-f06	transport, passenger, electric bicycle transport, passenger, electric bicycle APOS, U
	b8711445-b5	transport, passenger, electric bicycle transport, passenger, electric bicycle APOS, U
	11f843b9-a6!	transport, passenger, electric bicycle, label-certified electricity transport, passenger, elec
	22394adf-444	transport, passenger, electric bicycle, label-certified electricity transport, passenger, elec
	d3429762-c2	transport, passenger, motor scooter transport, passenger, motor scooter APOS, U
	1bda45ac-30	transport, passenger, motor scooter transport, passenger, motor scooter APOS, U
	07937a77-09	transport, regular bus transport, regular bus APOS, U
	806c93a2-a9l	transport, regular bus transport, regular bus APOS, U
	31554b6e-ae	transport, tractor and trailer, agricultural transport, tractor and trailer, agricultural APOS,
	be69db3f-22	transport, tractor and trailer, agricultural transport, tractor and trailer, agricultural APOS,
	90154a05-58	transport, trolleybus transport, trolleybus APOS, U
-	690b545e-4e	transport, trolleybus transport, trolleybus APOS, U

4 LC calculation result, system process

Addressing data quality in openLCA

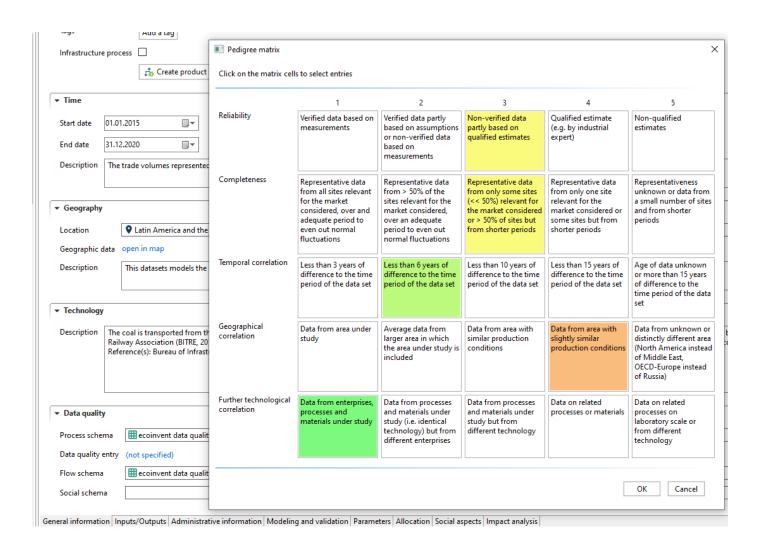
So far:


- Show data quality assessment done by data provider to user
- Enable users to define and set up own data quality systems
- Link data quality with uncertainty where needed
- Allow calculation of data quality over the life cycle
- Show in calculation result
- Find best suited processes (somehow)

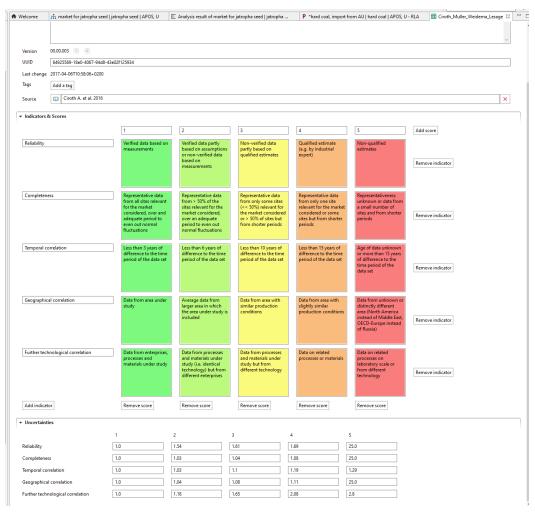
Show data quality assessment done by data provider to user

P. Inputs/Outputs: hard coal import from All I hard coal I APOS II - RI A

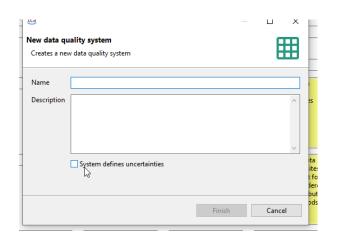
nputs										•
low	Category	Amount	Unit	Costs/Revenues	Uncertainty	Avoided waste	Provider	Data quality e	Location	Description
e hard coal	051:Mining of hard coal/0510:	1.00200	™ kg		lognormal: g		P market for	(3; 5; 5; 5; 7)		Compensatio
e transport, freight train	491:Transport via railways/4912:	0.20000	□□□ t*km		lognormal: g		P market for			The weighted
e transport, freight, sea, bulk c	501:Sea and coastal water trans	15.00000	™ t*km		lognormal: g		P market for	(3; 3; 3; 1; 1)		Rough estima
Outputs										•
Flow	Category	Amount	Unit	Costs/Revenues	Uncertainty	Avoided prod	Provider	Data quality e	Location	Description
F.º hard coal	051:Mining of hard coal/0510	1.00000	™ kg	0.03600 EUR	none					
Fa Particulates, > 10 um	Emission to air/unspecified	0.00200	mm kee		lognormal: g			(2; 5; 5; 5; 2)		For a lack of

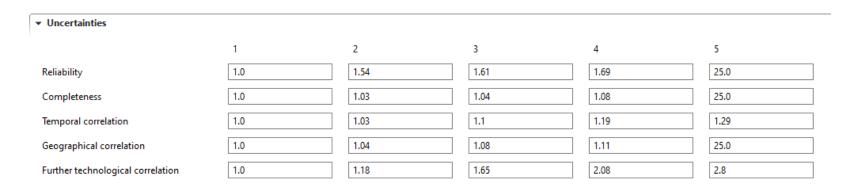

Show data quality assessment done by data provider to user, editable

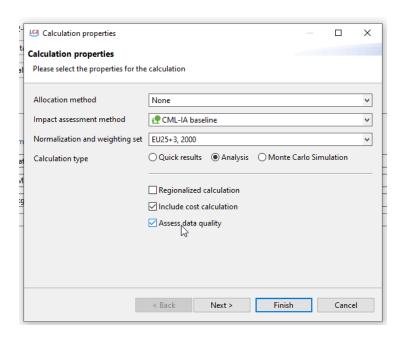
Show data quality assessment done by data provider to user, editable

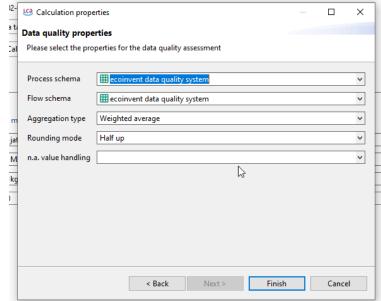

▼ Data quality Process schema Data quality entry
The control of the co
Data quality entry
Elicity Ciroth_Muller_Weidema_Lesage
Flow schema ecoinvent data quality system
Social schema ILCD data quality system ### PSILCA - Data quality system for social LCA data
General information Inputs/Outputs Administrative information Modeling and validate

Show data quality assessment done by data provider to user, editable




Enable users to define and set up own data quality systems


Link data quality with uncertainty where needed



(of course, whether this linkage makes sense is a separate discussion)

Allow calculation of data quality over the life cycle

market for jatropha seed | jatropha seed | APOS, U

▼ Inputs

Name	Category	Sub-category	Amount	Unit	R	C	T	G	F
Fa Aluminium, in ground	Resource	in ground	0.00059	kg	2	2	3	1	1
> F₃ Anhydrite, in ground	Resource	in ground	1.41165E-8	kg					
🦒 Antimony, in ground	Resource	in ground	2.40713E-9	kg	2	2	5	5	1
▶ F _{od} Argon-40	Resource	in air	4.25638E-5	kg	1	1	5	1	1
🧎 Arsenic, in ground	Resource	in ground	6.07274E-8	kg	1	2	1	1	1
🦒 Barium, in ground	Resource	in ground	0.00040	kg	4	4	5	5	1
😽 Basalt, in ground	Resource	in ground	0.00015	kg	3	4	5	4	3
🦒 Beryllium, in ground	Resource	in ground	9.92897E-10	kg	3	2	3	5	1
► 🦬 Borax, in ground	Resource	in ground	6.59611E-7	kg	4	3	5	4	5
🦒 Bromine, in water	Resource	in water	8.79379E-8	kg	4	5	3	4	1
😽 Cadmium, in ground	Resource	in ground	4.57994E-8	kg	1	3	3	1	1
► 🧑 Calcite, in ground	Resource	in ground	0.01680	kg	3	3	4	4	3
😽 Calcium, in ground	Resource	in ground	5.22240E-5	kg	1	3	3	1	1
Fo Carbon dioxide, in air	Resource	in air	2.04857	kg	4	3	3	5	1
😼 Carbon, organic, in soil or biomass stock	Resource	in ground	9.84245E-5	kg	2	2	4	2	1
Fa Carnallite	Resource	in water	9.20673E-7	kg	5	4	5	4	4

Name	Category	Sub-category	Amount	Unit	R	С	Т	G	F	
→ F _a Aluminium, in ground	Resource	in ground	0.00059	kg	2	2	3	1	1	
P bauxite mine operation bauxite APOS, U - GI	072:Mining of no	0729:Mining of other non	0.00056	kg	2	2	3	1	1	
P cobalt production nickel, class 1 APOS, U - G	072:Mining of no	0729:Mining of other non	1.10321E-5	kg	1	2	1	1	1	
P cobalt production sulfuric acid APOS, U - GL	072:Mining of no	0729:Mining of other non	5.33297E-6	kg	1	2	1	1	1	
P cobalt production copper concentrate, sulfide	072:Mining of no	0729:Mining of other non	2.86128E-6	kg	1	2	1	1	1	
P cobalt production copper, anode APOS, U -	072:Mining of no	0729:Mining of other non	2.59837E-6	kg	1	2	1	1	1	
P cobalt production ferronickel APOS, U - GLO	072:Mining of no	0729:Mining of other non	1.46648E-6	kg	1	2	1	1	1	
P zinc mine operation zinc concentrate APOS,	072:Mining of no	0729:Mining of other non	1.02078E-6	kg	1	3	3	1	1	
P zeolite production, powder zeolite, powder A	202:Manufacture	2023:Manufacture of soap	7.02606E-7	kg						
P cobalt production copper, cathode APOS, U	072:Mining of no	0729:Mining of other non	6.50234E-7	kg	1	2	1	1	1	
P cobalt production electrolyte, copper-rich Al	072:Mining of no	0729:Mining of other non	5.07718E-7	kg	1	2	1	1	1	
P zeolite production, powder zeolite, powder A	202:Manufacture	2023:Manufacture of soap	3.46913E-7	kg						
P zinc mine operation lead concentrate APOS,	072:Mining of no	0729:Mining of other non	2.02837E-7	kg	1	3	3	1	1	
P cobalt production nickel concentrate, 16% Ni	_	_	1.47542E-7	kg	1	2	1	1	1	
P zinc mine operation copper concentrate, sulfi	_	_	1.28613E-7	kg	1	3	3	1	1	
P cobalt production cobalt APOS, U - GLO	072:Mining of no	0729:Mining of other non	1.26925E-7	kg	1	2	1	1	1	

▼ Impact analysis: EF 3.0 Method (adapted)

Name	Category	Inventory result	Impact factor	Impact result	Unit	R	С	Т	G	F	
> ≣≣ Ionising radiation				0.04134	kBq U-235 eq	1	1	5	2	1	
> = Climate change					kg CO2 eq	3	3	5	4	2	
> Resource use, minerals and metals				1.29883E-5		3	1	2	2	1	
> Human toxicity, cancer - inorganics				2.56851E-18	CTUh	2	3	1	4	3	
> E Photochemical ozone formation				0.00406	kg NMVOC	2	3	5	3	2	
> Ecotoxicity, freshwater - inorganics				20.92396	CTUe	1	1	5	5	2	
> Eutrophication, marine				0.00641	kg N eq	2	3	5	3	2	
> Resource use, fossils				12.24467	MJ	2	2	5	3	2	
> E Human toxicity, non-cancer - inorganics				4.71327E-9	CTUh	2	2	5	4	2	
> Eutrophication, freshwater				0.00069	kg P eq	1	1	3	1	1	
> E Human toxicity, cancer - metals				5.08230E-9	CTUh	4	5	5	5	5	
> E Climate change - Fossil				1.44824	kg CO2 eq	3	3	5	4	2	
> E Human toxicity, non-cancer - metals				1.97186E-7	CTUh	4	5	5	5	5	
> 📘 Human toxicity, non-cancer				2.02688E-7	CTUh	4	5	5	5	5	
> E Acidification				0.04672	mol H+ eq	3	3	5	3	2	
> 📘 Ecotoxicity, freshwater - organics				1.80870	CTUe	3	3	4	2	2	
> 📘 Climate change - Biogenic				0.00126	kg CO2 eq	3	2	5	3	2	
> 📘 Climate change - Land use and LU change				0.00151	kg CO2 eq	4	3	5	3	2	
> 📘 Ozone depletion				8.37845E-8	kg CFC11 eq	2	3	5	5	3	
> 📘 Human toxicity, non-cancer - organics				6.20786E-10	CTUh	3	2	5	4	3	
> 📘 Ecotoxicity, freshwater - metals				121.00749	CTUe	2	3	5	5	4	
> 📘 Human toxicity, cancer				5.61501E-9	CTUh	4	4	5	5	4	
> 📘 Water use				3.10997	m3 depriv.	3	3	4	3	2	
> 📘 Particulate matter				3.46113E-7	disease inc.	3	3	4	3	2	
> 📘 Ecotoxicity, freshwater				143.57039	CTUe	2	3	5	5	4	
> 📘 Human toxicity, cancer - organics				5.32712E-10		1	1	5	1	1	
> 📘 Land use				206.83832	Pt	1	1	3	1	1	
> 📘 Eutrophication, terrestrial				0.19726	mol N eq	2	3	5	3	1	

Subgroup by processes ✓ Don't show < 1 🛕 %										
Name	Category	Inventory result	Impact factor	Impact result	Unit	R	С	Т	G	F
> ≣≣ lonising radiation				0.04134	kBq U-235 eq	1	1	5	2	1
> Climate change					kg CO2 eq	3	3	5	4	2
✓ I≡ Resource use, minerals and metals				1.29883E-5		3	1	2	2	1
> P copper mine operation and beneficiation, sulfide ore copper cond	cei 072:Mining of non-ferrous metal ores / 0729:Mining of othe			2.88545E-6	kg Sb eg	3	1	1	1	1
P copper mine operation and beneficiation, sulfide ore copper cond			ı	1.38280E-6	kg Sb eg	3	1	1	1	1
F Tellurium, in ground	Resource / in ground	2.51991E-8 kg	40.70000 kg Sb eg/kg	1.02560E-6	kg Sb eg	3	1	1	1	1
F Copper, in ground	Resource / in ground	0.00011 kg	0.00137 kg Sb eq/kg	1.45828E-7		3	1	1	1	1
F Selenium, in ground	Resource / in ground	3.75005E-7 kg	0.19400 kg Sb eq/kg	7.27509E-8		3	1	1	1	1
F Gold, in ground	Resource / in ground	1.01386E-9 kg	52.00000 kg Sb eq/kg	5.27209E-8	kg Sb eq	3	1	1	1	1
F Silver, in ground	Resource / in ground	3.65436E-8 kg	1.18000 kg Sb eg/kg	4.31215E-8		3	1	1	1	1
F Molybdenum, in ground	Resource / in ground	2.38921E-6 kg	0.01780 kg Sb eq/kg	4.25279E-8	kg Sb eq	3	1	1	1	1
> P copper mine operation and beneficiation, sulfide ore copper cond			J	1.01177E-6		3	1	1	1	1
 P gold mine operation and gold production, unrefined gold, unrefined 			1	7.38046E-7	kg Sb eq	2	1	3	5	1
F Gold, in ground	Resource / in ground	1.41932E-8 kg	52.00000 kg Sb eq/kg	7.38046E-7		2	1	3	5	1
> P zinc mine operation zinc concentrate APOS, U - GLO	072:Mining of non-ferrous metal ores / 0729:Mining of othe	_	1	7.06708E-7	kg Sb eq	1	3	3	1	1
> P copper mine operation and beneficiation, sulfide ore copper cond	ei 072:Mining of non-ferrous metal ores / 0729:Mining of othe		ı	7.02794E-7	kg Sb eq	3	1	1	1	1
> P copper mine operation and beneficiation, sulfide ore copper cond	cei 072:Mining of non-ferrous metal ores / 0729:Mining of othe		I	5.43365E-7	kg Sb eq	3	1	1	1	1
> P copper mine operation and beneficiation, sulfide ore copper cond	cel 072:Mining of non-ferrous metal ores / 0729:Mining of othe		I	5.19641E-7	kg Sb eq	3	1	1	1	1
> P copper mine operation and beneficiation, sulfide ore copper cond	cei 072:Mining of non-ferrous metal ores / 0729:Mining of othe		I	5.06873E-7	kg Sb eq	3	1	1	1	1
> P copper mine operation and beneficiation, sulfide ore copper cond	cel 072:Mining of non-ferrous metal ores / 0729:Mining of othe		I	4.32309E-7	kg Sb eq	3	1	1	1	1
> P copper mine operation and beneficiation, sulfide ore copper cond	cel 072:Mining of non-ferrous metal ores / 0729:Mining of othe		I	4.14739E-7	kg Sb eq	3	1	1	1	1
P silver-gold mine operation with refinery gold APOS, U - RoW	072:Mining of non-ferrous metal ores / 0729:Mining of othe		I	4.04860E-7	kg Sb eq	2	4	5	5	1
F Gold, in ground	Resource / in ground	4.20854E-9 kg	52.00000 kg Sb eq/kg	2.18844E-7	kg Sb eq	2	4	5	5	1
F Silver, in ground	Resource / in ground	1.57641E-7 kg	1.18000 kg Sb eq/kg	1.86016E-7	kg Sb eq	2	4	5	5	1
> P copper mine operation and beneficiation, sulfide ore copper cond	cei 072:Mining of non-ferrous metal ores / 0729:Mining of othe		I	3.51246E-7	kg Sb eq	3	1	1	1	1
> P copper production, cathode, solvent extraction and electrowinning	g 242:Manufacture of basic precious and other non-ferrous m			2.18783E-7	kg Sb eq	2	2	5	1	1
> P phosphate rock beneficiation phosphate rock, beneficiated APO	S, 089:Mining and quarrying n.e.c. / 0891:Mining of chemical a			1.76761E-7	kg Sb eq	1	2	5	3	1
> P silver mine operation with extraction lead concentrate APOS, U	P 072:Mining of non-ferrous metal ores / 0729:Mining of othe			1.72006E-7	kg Sb eq	3	3	3	1	1
> P gold production gold APOS, U - AU	072:Mining of non-ferrous metal ores / 0729:Mining of othe			1.50958E-7	kg Sb eq	3	3	5	1	1
P gold-silver mine operation with refinery gold APOS, U - RoW	072:Mining of non-ferrous metal ores / 0729:Mining of othe			1.48679E-7	kg Sb eq	3	4	5	5	1
> P molybdenite mine operation copper concentrate, sulfide ore AP	OS 072:Mining of non-ferrous metal ores / 0729:Mining of othe			1.44936E-7	kg Sb eq	2	2	5	1	1
P zinc mine operation lead concentrate APOS, U - GLO	072:Mining of non-ferrous metal ores / 0729:Mining of othe			1.40428E-7	kg Sb eq	1	3	3	1	1
> P chromite ore concentrate production chromite ore concentrate	AF 072:Mining of non-ferrous metal ores / 0729:Mining of othe			1.34081E-7	kg Sb eq	2	2	5	1	1
> E Human toxicity, cancer - inorganics				2.56851E-18	CTUh	2	3	1	4	3
> E Photochemical ozone formation				0.00406	kg NMVOC	2	3	5	3	2
> 📘 Ecotoxicity, freshwater - inorganics				20.92396	CTUe	1	1	5	5	2
> Eutrophication, marine				0.00641	kg N eq	2	3	5	3	2
> 📘 Resource use, fossils				12.24467	MJ	2	2	5	3	2
> E Human toxicity, non-cancer - inorganics				4.71327E-9	CTUh	2	2	5	4	2
> Eutrophication, freshwater				0.00069	kg P eq	1	1	3	1	1
> III Human toxicity, cancer - metals				5.08230E-9	CTUh	4	5	5	5	5

 (e.g.,Agribalyse, manually calculated estimate of data quality for assumed most relevant parts of a life cycle, in excel not necessary) Find best suited processes (somehow), via GLAD criteria in openLCA Nexus

Outlook: data quality in openLCA

- We are doing not so bad, but
 - Capacity building
 - User defined fitness for purpose
 - Real uncertainty
 - A challenge: full system compliance (EF, etex cheat, "quality-washing", ..)

Greendelta

sustainability consulting + software

Thank you!

Contact
Dr. Andreas Ciroth
ciroth@greendelta.com

GreenDelta GmbH Kaiserdamm 13, 140 57 Berlin www.greendelta.com