A methodology to account for plastic emissions and associated impacts from seafood supply chains. Application to French case studies

Philippe Loubet, Bilal Erradhouani
Cyvi Group, ISM, Université de Bordeaux
82nd LCA Discussion Forum
04/11/2022

- Context and objectives
- Methodology to account for plastic emissions and associated impacts
- **Results**: plastic losses and impacts from French seafood life cycles
- Conclusions and perspectives

- NEPTUNUS Project (2019-2022)
- II partners in the Atlantic area
- General objectives of the project: aims to promote the sustainable development of the seafood sector in the Atlantic area by providing a consistent methodology for products ecolabeling and defining ecoinnovation strategies for production and consumption.

NEPTUNUS

- Within the project, one action related to marine debris with the following **objectives**:
 - Quantify flows of plastics from seafood life cycles in Europe-Atlantic area (LCI)
 - Assess the associated potential environmental impacts from these plastics (LCIA) with existing methodologies from the literature

3

General methodology and implementation in a spreadsheet tool

Loss rate: fishing gears

Estimates of fishing gear loss rates at a global scale: A literature review and meta-analysis

Kelsey Richardson^{1,2} | Britta Denise Hardesty¹ | Chris Wilcox¹

Source: Richardson et al. 2019. Estimates of fishing gear loss rates at a global scale: a literature review and meta-analysis. Fish Fish. 20, 1218–1231. https://doi.org/10.1111/faf.12407.

Loss rate: fishing gears

Trammel (Nylon+PP)

Compartment of release to the ocean

Loss rate: marine coatings

Loss rate: plastic pellets, tire abrasion, mismanaged waste

 Loss and initial release compartment gathered from Plastic Leak Project

Source: Peano, L., Kounina, A., Magaud, V., Chalumeau, S., Zgola, M., Boucher, J., 2020. Plastic Leak Project. Methodological Guidelines. Quantis and EA. quantis-intl.com/plastic-leak- project-guidelines.

Summary of plastic types, loss rates and initial release compartments

	Type of	Variations	Type of	Shape	Size	Loss rate LR (%)			Initial release comp. (%)			
	losses		plastic			Average	Min	Max	Ocean	Fresh water	Soil	Air
	Fishing gears	Dredge	various	Fiber	Ø 5 mm	1.80%	1.60%	1.90%	100%	0%	0%	0%
	(macroplastics)	Trammel net	PP+Nylon			5.80%	5%	6.50%				
		Longline	PEVA+Nylon			20%	19%	22%				
***		Purse seine	PEVA+Nylon			6.60%	5.90%	7.30%				
		Seine	PEVA+Nylon			2.30%	1.90%	2.80%				
20222		Trap/pot	various			19%	18.00%	20%				
		Trawl bottom	PE+Rubber			1.80%	1.60%	1.90%				
		Trawl pelagic	PE+Rubber			0.70%	0.58%	0.82%				
	Marine coatings	-	Nylon (PA)	Particle	Ø 0.1mm	1.20%	0.50%	3%	100%	0%	0%	0%
H H	Plastic pellets (microplastics)	-	Various	Particle	Ø 0.5mm	0.01%	0.001%	0.10%	0%	16%	68%	2%
	Tire abrasion (microplastics)	Truck I6-32t (kg/tkm)	Rubber	Particle	Ø 0.1mm	2.74E-05	1.51E-05	5.79E-05	0%	16%	68%	2%
	Mismanaged	France	PS	Film	5 to 10 mm	0.02%	0.02%	4%	0%	40%	60%	0%
Ē	plastics at the end-of-life (macroplastics)			(packaging)	thickness							
	(maci opiasucs)											

Fate factors from the literrature

- **Fate factors** (yr) are based on the work of Maga et al. 2022 that include:
 - **Degradation** in the short (100yrs) or long term (infinite), based on **surface** degradation rate (μ m/yr)
 - Transportation to final compartments based on static redistribution rate between compartments (%)

=> **Result** : time-integrated mass (mg.yr) in each compartment

Influencing parameters

	Degradation	Transport
Emissing compartment (ex : ocean, freshwater)	×	 Image: A second s
Receiving compartment (ex : ocean, marine sediment)	\checkmark	\checkmark
Type of plastic (HDPE, PE, PS,)	\checkmark	~
Size (ex. 5 mm of d for fishing gears)	\checkmark	×
Shape (fiber, particle, film)	\checkmark	×

	Type of losses	Type of Shape plastic		pe Size	Degradation rate (µm/yr)	Emission comp.	Fate factors long term (yr) in receiving compartments				
							Marine water	Marine sediment	River sediment	Soil	
	Fishing gears (macroplastics)	HDPE	Fiber	Ø 5 mm	11,7 (mw)	Marine water	71				
		PP	Fiber	Ø 5 mm	6,1 (mw)	Marine water	137				
Ħ		PEHD	Particle	Ø 0.5mm	II.7 (all comp.)	Freshwater	5.3				
	Plastic pellets (microplastics)					Soil		0.1		5.2	
						Air	0.2			5.1	
	Mismanaged plastics packaging at the	PS	Film	10mm thickness	0.1 (all comp.)*	Freshwater		2750	22250		
	end-of-life (macroplastics)					Soil		75	675	24250	

Application to French seafood life cycles

I5 selected products from Agribalyse v3.0

0

Results : plastic losses

 Plastic losses for lkg of fresh saithe at the consumer (bottomtrawl fishing) – average scenario

170 mg of plastic losses for 1 kg of fish at the user

95 mg macroplastics75 mg microplastics

Variability of results for plastic losses | fishing activities

• Comparison between **active** (trawl) and **passive** (longlining) fishing activity

- More plastics required for longlining : **15g/kg of swordfish** (9g/kg for Saithe)
- More plastic losses for longlining (20% instead of 1.8% for trawl)

• **Top 4** persistent plastic losses are **macroplastics**

=> Due to very high FF of **PS large size** (+10000yr; might be overestimated)

- Due to their faster degradation rate, fate of microplastics is very low compared to macroplastics
- What about **fragmentation** of macro into microplastics ?

- Conclusions
 - **I50mg** to **3000mg** of plastics losses per kg of fish at the consumer (average scenario)
 - Fishing gear and tire abrasion generate most of plastic losses, except when considering higher mismanaged waste at the end-of-life
 - Information on elementary flows is **compatible** with fate factor and takes into account type/shape/size of the plastic losses
- Perspectives
 - Apply effect factors to compute damages and compare with other damages of the product
 - Systematically study the **variability** and **uncertainty** of the results
 - Implementation of elementary flows into life cycle inventory database (e.g., Agribalyse)

Thank you for your attention!

Philippe Loubet, philippe.loubet@u-bordeaux.fr

NEPTUNUS is a project co-funded by European Regional Development Fund (ERDF) under the umbrella of INTERREG Atlantic Area with the application code: EAPA_576/2018.

Know more: https://neptunus-project.eu

