MORINE IMPACTS IN LCA

November 4th, 2022

Learnings from MarILCA and case study applications integrating microplastics impacts into LCA

Prof. Anne-Marie Boulay, Elena Corella-Puertas

The process – MarILCA (Marine Impacts in LCA)

- International scientific committee founded in 2018
- Coordinates harmonized research efforts among organizations across the globe
- Goal: Integrating impacts of marine litter, especially plastic, into LCA

Work plan

Paper submission planned for Summer/Fall 2019

Phase 1 2019

Phase 2

2020-2022

- Coordination and launch of different research projects filling identified gaps
- Act as central reference aiming to avoid scientific overlap
- Members welcome who are working and contributing on the topic.
- Findings and updates will be regularly discussed with stakeholders vi an online platform, as well as digital and physical workshops.

- Consensus building process: Delivery of a harmonized and consensus-based impact pathway framework and methods addressing plastic litter impacts (and potentially other complementary marine impacts) in LCA
- Joint participation with GLAM (Global Guidance for Life Cycle Impact Assessment Indicators and Methods) project of Un Environment Life Cycle Initiative

Phase 3 2022-2025

MarILEA

MARINE IMPACTS IN LCA

From www.marilca.org

MarILCA framework and contributors

MarILCA framework - application of microplastics CF

Adapted from Woods, J. S., Verones, F., Jolliet, O., Vázquez-Rowe, I., & Boulay, A. (2021). A framework for the assessment of marine litter impacts in life cycle impact assessment. *Ecological Indicators*, *129*, 107918.

Application of CFs

MORINE IMPACTS IN LCA

- From Corella et al (in preparation) results
- For microplastic emissions to the marine environment
- Based on existing case studies

• Corella et al, in preparation

Application to case studies

UNEP report on supermarket food packaging:

- 1. To-go food containers
 - EPS vs bagasse vs wood pulp
 - Cradle-to-grave (Corella-Puertas et al. 2022)
- 2. Fresh produce (lettuce) bags

- PP vs PLA
- Microplastic impacts added to Vigil et al. 2020
- 3. Reusable fruit crates
 - PP vs HDPE vs cardboard
 - Microplastic impacts added to Abejón et al. 2020

Plastics inventory (Plastic Leak Project)

Identifying and quantifying sources of marine microplastic emissions:

- I. Primary microplastics (pellets) at the **production stage**
 - 70% of emissions to freshwater are transported to marine water
- II. Secondary microplastics from macroplastics leaked at the **end-of-life stage**
 - Macroplastics leakage depends on region (HIC, UMC, LMC, LIC)
 - Residual value identified (high for reusable crates, low for lettuce bags and to-go food containers)
 - Different macroplastic fragmentation scenarios tested (10%, 50%, 100%)
- III. TRWP from tire abrasion at the **transportation stage**
 - Only quantified for to-go food container study
 - TRWP << other microplastic sources

Microplastics inventory

Case study	Polymer	Production stage (pellets)	End-of-life stage (100% macroplastic fragmentation)	Transportation stage (tire abrasion)
		kg emitted/ kg produced	kg emitted/ kg waste	kg emitted/ (kg product*km)
To-go food containers (1 container) <i>Corella-Puertas et al.</i> 2022	EPS	1.20E-05	7.45E-03	N/A
	TRWP	N/A	N/A	5.17E-10
Bags for fresh-cut produce (1 bag)* <i>Vigil et al. 2020</i>	PLA	1.20E-05	2.49E-01	N/A
	РР	1.20E-05	2.39E-01	N/A
Reusable fruit and vegetable crates* (100668 crates) <i>Abejon et al. 2020</i>	HDPE	1.20E-05	9.55E-03	N/A
	РР	1.20E-05	9.55E-03	N/A

*Leakage in low-income countries (worst-case scenario)

Applications in Case studies – UN Report (October 2022)

• Limits: only microplastics impacts in ocean considered (not macroplastic effect of entanglement/ingestion yet, not additives toxicity)

MarILEA

MARINE IMPACTS IN LCA

The outcome – preliminary findings

- → For all case studies performed so far, only EPS impacts have the potential to change the outcome of an LCA
- → Impacts from macroplastic entanglement, additives leaching, not included
- \rightarrow Most (single use) alternatives to single-use plastic perform worse than the single-use plastic item
- → Global warming remains the most important impact category for ecosystem quality damages

Conclusions & outlook

1

- CF for *physical effects on biota* of microplastic emissions were proposed for 9 polymers, 3 shapes and 5 sizes and applied to case studies
- Ongoing work on sedimentation and fragmentation modelling, human health impacts
- Upcoming work on soil, air and freshwater fate, regionalisation, additives impacts

MARINE IMPACTS IN LCA

Merci! Questions?

Prof. Anne-Marie Boulay Chemical Engineering Department Polytechnique Montreal

Anne-marie.boulay@polymtl.ca

ciraig.org

The missing piece of plastic litter

CIRAIG