The Norwegian electricity model for buildings LCA: characteristics and effects

Leader Centre for Green Shift in the Built Environment Department of Civil and Environmental Engineering Norwegian University of Science and Technology

Omstilling til karbonnøytralt bygget miljø

Overview

- The Norwegian electricity production
 - Physically delivered electricity
 - Electricity Certificates
 - Electricity disclosure
- ZEB
- NS3720

CO₂ physically delivered electricety

Nærmere om beregningen

(i)

2022

704

46

7 022 1 982 SE

SERVICES

Premium Data Services

THE POWER MARKET

Day-ahead market

 \times

NTNU Norwegian University of Science and Technology

NORD POOL

MARKET DATA

Day-ahead

TRADING

Join our markets

NORD POOL DAY-AHEAD

NORD POOL INTRADAY

REGULATING POWER

POWER SYSTEM DATA

DATA DOWNLOADS

NORD POOL UK

MAPS

٠

 \odot

 \odot

۲ ٠

٠

85.02

Electricity Certificates (GO)

- Since January 1st in 2012, Norway and Sweden have established a joint market for electricity certificates.
- The common goal is to increase renewable electricity production by 28.4 TWh by 2020. In this way, Norway and Sweden both contribute to the targets in the EU Renewable Energy Directive.
- Electricity producers that invest in renewable power generation can receive certificates for the electricity generated for the next 15 years. One certificate is allocated for every new megawatt hour (MWh) produced renewable electricity. The electricity certificates are sold in a market where prices are determined by supply and demand. In this way, the electricity producers receive an extra income in addition to the electricity price.

Electricity disclosure

NTNU Norwegian University of Science and Technology

Norwegian Water Resources and Energy Directorate (NVE), https://www.nve.no/english/

CO2 faktors for kWh production

D NTNU Norwegian University of Science and Technology

TEK 17

Kapittel 14 Energi

§ 14-2. Krav til energieffektivitet

(1) Det totale netto energibehovet for bygningen skal ikke overstige energirammene i tabellen i bokstav a samtidig som kravene i § 14–3 oppfylles.

a)

Tabell: Energirammer

Bygningskategori	Totalt netto energibehov [kWh/m² oppvarmet BRA per år]
Småhus, samt fritidsbolig over 150 m² oppvarmet BRA	100 + 1600/m² oppvarmet BRA
Boligblokk	95
Barnehage	135
Kontorbygning	115
Skolebygning	110
Universitet/høyskole	125
Sykehus	225 (265)
Sykehjem	195 (230)
Hotellbygning	170
Idrettsbygning	145
Forretningsbygning	180
Kulturbygning	130
Lett industri/verksteder	140 (160)

b) Kravene gitt i parentes gjelder for arealer der varmegjenvinning av ventilasjonsluft medfører risiko for spredning av forurensning eller smitte.

Tabell: Energitiltak

	Energitiltak	Småhus	Boligblokk
1.	U-verdi yttervegg [W/(m² K)]	≤ 0 <mark>,</mark> 18	≤ 0 <mark>,</mark> 18
2.	U-verdi tak [W/(m² K)]	≤ 0 <mark>,</mark> 13	≤ 0 , 13
3.	U-verdi gulv [W/(m² K)]	≤ 0 , 10	≤ 0,10
4.	U-verdi vinduer og dører [W/(m² K)]	≤ 0 <mark>,</mark> 80	≤ 0 <mark>,</mark> 80
5.	Andel vindus- og dørareal av oppvarmet BRA	≤ 25 %	≤ 25 %
6.	Årsgjennomsnittlig temperaturvirkningsgrad for varmegjenvinner i ventilasjonsanlegg (%)	≥ 80 %	≥ 80 %
7.	Spesifikk vifteeffekt i ventilasjonsanlegg (SFP) [kW/(m³ /s)]	≤ 1,5	≤ 1,5
8.	Luftlekkasjetall per time ved 50 Pa trykkforskjell	≤ 0 <mark>,</mark> 6	≤ 0,6
9.	Normalisert kuldebroverdi, der m² angis som oppvarmet BRA [W/(m² K)]	≤ 0,05	≤ 0,07

ZEB – and the need for a future average CO2-factor

With the development of Zero-Emission-Buildings, the need for an average «future CO2-factor» emerged, in order to calculate «0»

Expected development of the carbon intensity of the grid i Europe Calculated future average carbon intensityfor the European grid 2010 2070

The research project ZEB, **first** developed such a factor, described at the calculated average for the European grid for the period 2010 to 2050, and extrapolated towrads 2070. Later NS3720 for the period 2015-2075

ZEB => 132 gCO2eq/kWh NS3720 => 136 gCO2eq/kWh

ZeroEmissionBuildings (ZEB)

$$\begin{split} \Delta E &= \\ E E_c + E E_m + E E_{plet} + E E_e + \sum_{N=1}^{N=60} \Delta E_{O,N} \\ & \left(kg \; CO_2 \text{-}ekv./m^2 \right) \end{split}$$

As defined and used by the research centers:

- The Research Centre on Zero Emission Buildings, ZEB (2009-2017), and http://www.zeb.no/index.php/en/
- Zero Emission Neighbourhoods (ZEN) in Smart Cities (2018 2024) <u>https://fmezen.com/about-us/</u>

NS3720 -

- Two choices:
 - Scenario 1
 NO
 - Scenario 2
 EU28+NO

Norge					
teknologi	(g/kWh)				
Vannkraft	2-20	Turconi, R., Boldrin, A. and Astrup, T. (2013), Life cycle assessment			
Vindkraft	3-41	(LCA) of electricity generation technologies: Overview, comparability and limitations, <i>Renewable and Sustainable Energy</i> <i>Reviews</i> , 28 (2013) 555–565.			
Kullkraft	660-1300				
Naturgass	380-1000				
PV – solenergi	13-190				
Biotermisk	8,5-130				
Kjernekraft	3-35	EPD® Electricity from Vattenfall Nordic Nuclear Power Plants https://www.environdec.com/Detail/?Epd=11982			
Varmekraft fra naturgass med CCS	~100	Modahl, I.S., Askham, C., Lyng, KA. and Brekke, A.: Weighting of environmental trade-offs in CCS - An LCA case study of electricity from a fossil gas power plant with post-combustion CO ₂ capture, transport and storage, Int, J, Life Cycle Assessment, Springer-Verlag, 27, March 2012, Volume 17, Issue 7 (2012), side 932–943 (http://www.springerlink.com/openurl.asp?genre=article&id=doi:1 0.1007/s11367-012-0421-z)			
Varmekraft i Norge	450	SSB og http://www.uni- obuda.hu/users/grollerg/LCA/hazidolgozathoz/lca- electricity%20generation%20technologies.pdf			
Varmekraft i EU	800	Eurostat og http://www.uni- obuda.hu/users/grollerg/LCA/hazidolgozathoz/lca-			
Scenario 1 – NO,	18*	Beregnet på bakgrunn av norsk produksjon i dag og antatt innslag av vann-, vind- og varmekraft som andel av total energiproduksjon i 2050. Basert på middelverdier i Turconi et al. (2013) og tabell C 2			
Scenario 2 – EU28+NO	136*	Beergnet på bakgrunn av Eurostat og EUs Roadmap2050 og http://www.uni- obuda.hu/users/grollerg/LCA/hazidolgozathoz/lca- electricity%20generation%20technologies.pdf			

Norsk Standard

NS 3720:2018

Metode for klimagassberegninger for bygninger

Method for greenhouse gas calculations for buildings

Referansenummer: NS 3720:2018 (no)

Standard Norge

© Standard Norge 2018

rolf.bohne@ntnu.no