

Horocarbon : CO₂ emissions of Swiss electricity in high temporal resolution

Dr. Elliot Romano – 85th LCA Forum

Zurich, 9th November 2023

Context

- Switzerland is highly dependent (in winter) on electricity imports from neighbouring countries.
- Some surrounding countries (i.e D) relies on electricity generation stemming out of fossil fuel power plants.
- Assessment of CO₂ embedded in consumed electricity at a hightemporal resolution is relevant to assess the environmental impacts of new electricity usages, such as Heat-Pumps or Battery Electric Vehicles.

Swiss consumption mix

Traded-mix methodology

- relies on the **merit-order principle** and electricity crossborder trade mechanisms.
- considers the **impact** of a country imports on the neighbours' generation fleets.

differs from the most commonly-applied method (**global-mix**), considering the mix of imported electricity with the same structure as the generation mix of the exporting country.

D_d : Domestic demand

Results

• identification of the energy mixes and embedded GHG emissions of imports and domestic generation.

Hourly emissions factors

Hourly, daily and monthly profiles of the Swiss 2017 electricity consumer mix, in terms of the GHG emission factor (left) and the renewable energy fraction (right).

- important seasonality of emissions factors.
- correlation of emission factor with Swiss electricity imports.

 \rightarrow relevancy of hourly granularity of emissions factors to assess GHG footprint of electricity usages with seasonal profiles (HP, BEV).

Traded vs Global mix

• Comparison :

- **Traded mix** : higher emissions factor (green) & lower renewable share in the mix.
- **Global mix** : lower emissions factor & higher renewable share in the mix.
- Reminder : Global-mix imports mix have the same structure as the generation mix of the exporting country.

Hourly profiles

• Winter & nights :

- traded-mix depicts higher emission factors than global-mix, specially at nights and early afternoon hours in winter.
- during those hours, a share of the Swiss consumption is satisfied by imports stemming out of fossil fuel power plants abroad, as imports are less costly.

Summer :

- traded-mix and global-mix emissions factor aligns to each other in summer
- during the summer period, Switzerland is a net-exporter.

Correlation price vs GHG

negative correlation between emission factors and electricity market prices.

Multi-annual comparison

Global-mix method

- over-estimates renewables (located at the left-hand side of the exporting countries) in the imports mix.
- characterized by lower emission factors across the year.

Traded-mix method

- reinforces the fossil-fuels power plants (located at the right-hand side of the meritorder) in the import mix
- depicts the substitution by fossil fuel power plants, when domestic nuclear generation is unavailable due to outages (e.g. 2017 or 2021)

Conclusions

- relies on the merit-order principle and cross-border trade as observed on the electricity markets.
 - provides emissions factor ranging from 62g CO₂ eq./kWh in 2020 to 160g CO₂ eq./kWh in 2017, with an updated value around 109 CO₂ eq./kWh in 2022.
 - provides emission factors at hourly granularity and depicts the importance of considering their seasonality for assessing environmental impact of electricity usages (HP, BEV).

horocarbon.ch

Thank you for attention

elliot.romano@unige.ch

More information :

E.Romano, P. Hollmuller, M. Patel (2023) : «Applying trade mechanisms to measure quantify GHG emissions of electricity consumption in an open economy - the case of Switzerland », submitted