Safe and sustainable by Design

The JRC framework: updates on ongoing activities and next steps

Giulio Bracalente

86th LCA Discussion Forum: Safe-and-Sustainable-by-Design

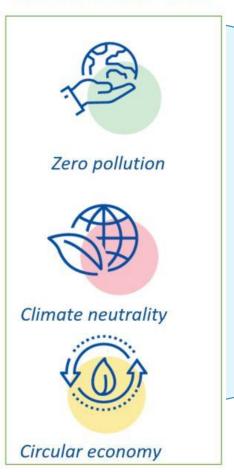
ETH, Zurich, 25th April 2024

The Joint Research Centre of the European Commission

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policy-making with independent evidence throughout the whole policy cycle.

Agenda

- Overview of the SSbD framework
 - Policy context
 - Main features
 - Challenges and ongoing activities


- Outlook the SSbD framework
 - Synergies
 - Next milestones

Policy context

The EU Green Deal

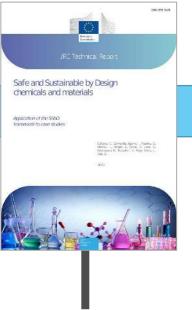
Chemicals Strategy for Sustainability (CSS)

- phase out the most harmful (not only SVHCs) substances and
- substitute, as far as possible, all other substances of concern, and otherwise minimise and track them.

New approaches to tackle releases and emissions across all life cycle stages, and move towards zero-pollution for air, water, soil and biota.

CSS Action Plan

Develop safe and sustainable-bydesign (SSbD) criteria for chemicals

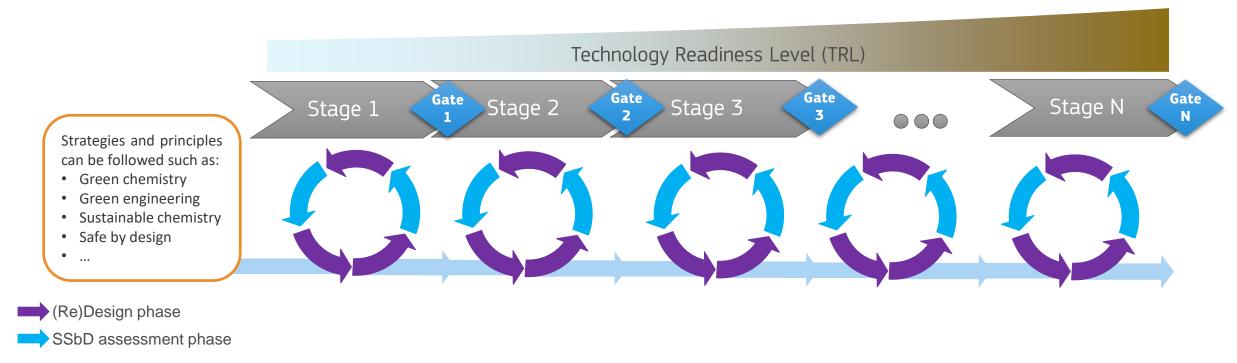


Overview of the SSbD framework Policy context

Testing by stakeholders and updates proposals

2024

Application of the framework to case study



Scope of the SSbD framework

- a pre-market, voluntary approach, to steer innovation toward safe and sustainable chemicals and materials
- support the various stages of the innovation process (design, planning, experimental testing and prototyping) where decisions are taken to proceed with, abandon or tweak the innovation pathway
- applicable to the development of new chemicals and materials or to reassessment of existing ones towards improving the overall performance of processes

Structure of the framework: Stage-gate and Iterative approach

> It is essential to test the application of design principles against safety and sustainability aspects

Green chemistry principles

Green engineering principles

Sustainable chemistry

Circularity principles

Others

(Re)Design phase: Design principles (Indicators + Actions)

	SSBD principles
SSBD1	Material efficiency
SSBD2	Minimise the use of hazardous chemical/materials
SSBD3	Design for energy efficiency
SSBD4	Use renewable sources
SSBD5	Prevent and avoid hazardous emissions
SSBD6	Reduce exposure to hazardous substances
SSBD7	Design for end-of-life
SSBD8	Consider the whole life-cycle

Molecular (Re)Design

Process (Re)Design

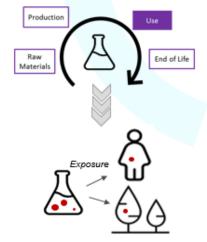
Product (Re)Design



For each step the framework refers to:

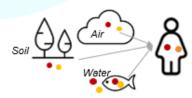
> Aspects and indicators

Methodology and tools


Proposal for the definition of criteria

Evaluation procedure

Safety and sustainbaility assessment: a stepwise approach


HUMAN HEALTH AND ENVIRONMENTAL ASPECTS IN THE FINAL APPLICATION PHASE

ENVIRONMENTAL

SUSTAINABILITY ASSESSMENT

SOCIO ECONOMIC SUSTAIBAILITY ASSESSMENT

Challenges and ongoing activities

Inputs received to the framework (1)

Workability

<u>Data</u>

- harmonisation and availability of data, especially in early stage of innovation
- minimum data requirements and the generation of new data
- dealing with confidentiality of data and the exchange in the value chain

Expertise

expertise in the value chain, especially for SME

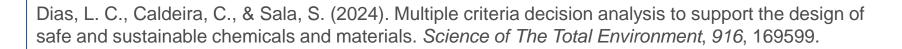
Tool

- availability of tools for the different Steps
- applicability of the tool, especially for SMEs

SSbD framework

Challenges and ongoing activities

Inputs received to the framework (2)


Methodology

Goal, scope and structure

- integration design principles and SSbD assessment: definition of scope of the assessment, systems boundaries
- flexibility of the framework and integration with R&I
- simplified methodology according to TRL
- chemicals/materials with multiple applications

Criteria, trade-off and decision making

- dealing with functionality
- defining indicators and scoring system
- integration RA and LCA, also in terms of terminology
- dealing with uncertainty of data when comparing alternatives with different data quality

SSbD framework

Challenges and ongoing activities

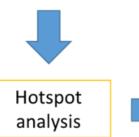
SSbD methodology (1) – Scoping analysis

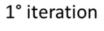
Integration between design principles and the SSbD assessment

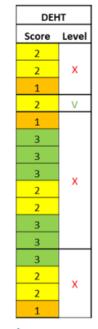
Integration of Risk Assessment (RA) and Life Cycle Assessment (LCA)

Multiple uses and applications of the chemical/material

Definition of the case study


- Development of a tiered approach coherent with the TRLs
- Exploration of integrating risk assessment and LCA


Challenges and ongoing activities


SSbD methodology (2) - Iteration within LCA

DE	DEHT						
Impact category	Impacts	% change	Score	Level			
Human toxicity, cancer	1.90E-09	-1%	1				
Human toxixcity, non cancer	3.83E-08	0%	1	х			
Ecotoxicity, freshwater	57.2	-1%	1				
Climate change	4.137	-1%	1	Х			
Ozone depletion	9E-07	0%	1				
Particulate matter	1E-07	-11%	2	2 1 2 1 1			
lonizing radiation	0.772	0%	1				
Photochemical ozone formation	0.009	-9%	2				
Acidification	0.016	-4%	1				
Eutrophication, terrestrial	0.034	-2%	1				
Eutrophication, freshwater	0.00155	-1%	1				
Eutrophication, marine	0.003	-3%	1				
Water use	5.1	-1%	1				
Land use	104.4	-1%	1	v			
Resource use, fossil	85.5	-2%	1	_			
Resource use, minerals and metals	0.00005	3%	1				

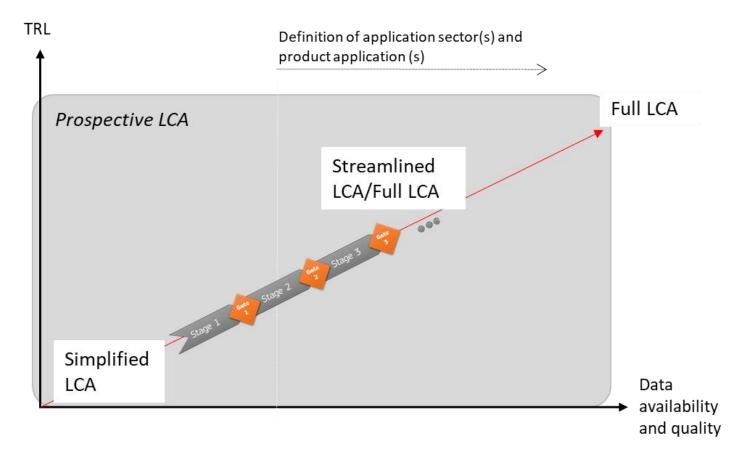
Application of design principles

2° iteration

DEHT				
Score				
2				
2	V			
2				
2	V			
1				
3				
3				
3	v			
2	ľ			
2				
3				
3				
3				
2	V			
2	ľ			
2				

Application of design principles

Challenges and ongoing activities


SSbD methodology and data - simplified LCA

Screening LCA

- Usually at low TRL
- Data from laboratory
- Un/known application

Full LCA

- Increasing TRL
- Data from industrial or pilot scale
- Known application

Outlook for the SSbD framework

Outlook of the SSbD framework **Synergies**

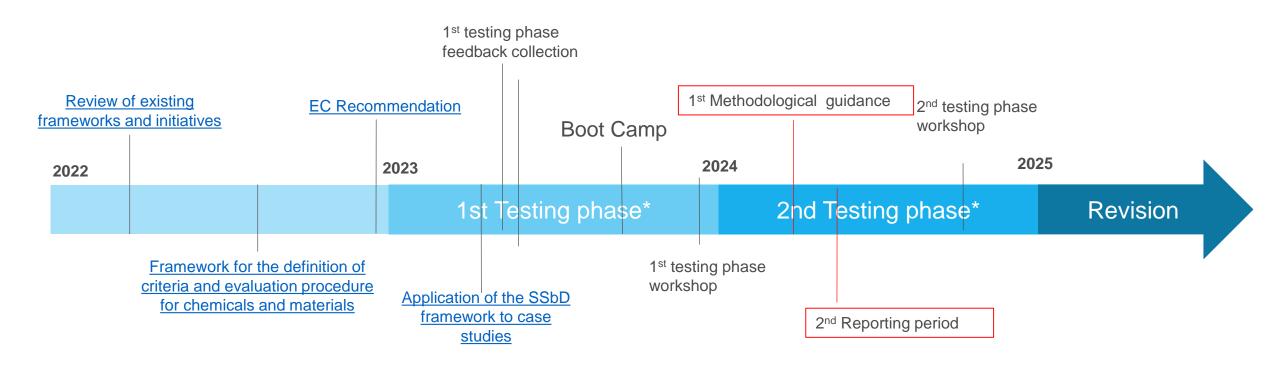
SSbD related projects

Operationalisation of the SSbD framework developed by the EC. Including via the creation of a SSbD toolbox

Desing innovation roadmaps for textiles, construction, electronics, energy, automotive, packaging and fragrance in close cooperation with industries

Many others projects at European and MS level are on-going, involving different stakeholders, including Industries, Academia, Research organizations, NGOs

Caldeira et al 2024 Safe and sustainable chemicals and materials: a review of sustainability assessment frameworks. Green Chemistry


Outlook of the SSbD framework **Synergies**

Existing and future EU policy framework

- Pre-market, voluntary approach, to steer innovation toward safe and sustainable chemicals and materials
- Anticipation of potential safety and sustainability-based requirements from recent/new pieces of EU legislation
 - REACH (Registration, Evaluation, Authorization of Chemicals) restriction: cut-off criteria in Step
 1 of SSbD to avoid "regrettable substitution"
 - ESPR (Ecodesign for Sustainable Product Regulation): setting performance requirements for Substances of Concern in articles
 - AM (Advanced Materials) communication, steering the design of Advanced Material
 - Biotechnology communication, steering the design of bio-based products
 - IED (Industrial Emission Directive): promoting the use of safe and sustainable by design chemicals
- Safety and sustainability data will be made available towards the implementation of 1S1A (One Substance One Assessment) Regulation

Outlook of the SSbD framework Next milestones

Thank you and keep in touch

giulio.bracalente@ec.europa.eu

JRC SSbD Team

© European Union 2024

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0 license</u>.

EU Science Hub

<u>Joint-research-centre.ec.europa.eu</u>

