USEtox: linking element between safety &

sustainability

Peter Fantke Technical University of Denmark

86th LCA Discussion Forum 25-April-2024, Zürich (CH)

http://doi.org/10.1039/D0GC01544J

USEtox: Safety & Sustainability Metrics for SSbD

- Global UNEP/SETAC scientific consensus model USEtox
- Defined criteria for consensus:
 - Based on mature science
 - Outputs within outputs of other models
 - Only incl. most influential aspects
 - Endorsed by all involved scientists
 - Transparent and well-documented

– USEtox 3: hazard & LCA metrics

http://usetox.org/documentation

USEtox: Safety & Sustainability Metrics for SSbD

PiF: product intake fraction [kg intake/kg in product], *wf*: chemical weight fraction in product [kgchemical/kg product], *M*: product mass applied [kgproduct/functional unit or kgproduct/person/day], *n*: number of individuals [persons], *BW*: individual body weight [kg/person], *x*: effect response level, TD_x : dose inducing level *x* of tumors [mg/kg_{BW}-d], POD_x : point of departure for deriving a reference dose [mg/kg_{BW}-d], *UF*: uncertainty factors, *m*: reactant mass needed in chemical supply chain [kg/functional unit], *ef*: emission factor per reactant mass [kg/kg], *FF*: fate factor linking mass in the environment to mass emitted [kg/(kg/d)], *XF*: exposure factor linking exposure rate or exposure fraction to mass in the environment [(kg/d)/kg or kg/kg], *EF*: effect factor linking toxicity or ecotoxicity effects to exposure [impact/kg]

Safety & Sustainability in SSbD: A step-wise approach

DTU Service and life cycles in USEtox

- Emitter vs. receptor perspective
- Chemical vs.
 product life cycle
- Near-field vs. farfield exposure

Example: DEHP Plasticizer in Vinyl Flooring

Tier 1: Alternative Plasticizers – Use Stage (Safety)

Receptor perspective

USEtox hazard metrics Effect factors Fate factor = persistence Exposure dose Lifetime cancer risk Hazard quotient

Maximum acceptable content

Tier 2: Chemical Supply Chain Information (Sustainability)

Example: natural resources and intermediate products used for producing DEHP

Tier 3: Product Life Cycle Screening Impacts (Sustainability)

- Select impact categories based on relevance for SSbD use context
- Not the chemical class, but the function drives impact profiles
- Uncertainties help to understand whether differences are significant
- Rest-of-product contribution varies
 across indicators

USEtox impact metrics

Characterization factors

Take-Home Messages

- Safety & sustainability elements in SSbD can be combined in USEtox for human and ecosystem effects from chemicals, based on same boundary conditions & same foundation for different metrics
- Growing availability of chemical LCI information crucial (e.g. EGIP)
- Not only SSbD assessment steps, but also succession in interpretation (i.e. aligned (!) broadening of assessment scope)
- **Reference for comparison** at each assessment step relevant (functional comparison unit, and receptor vs. emitter perspective)

Thank you!

Contact: pefan@dtu.dk