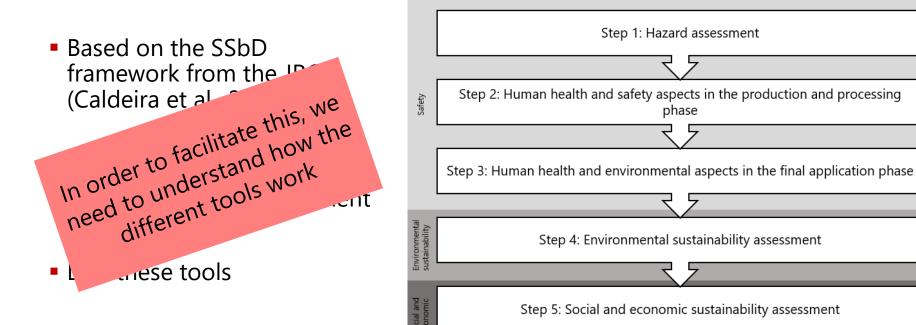


Materials Science and Technology

PARC case-study BPA and alternative substances: First broad testing of tools for SSbD assessments

Joanke van Dijk

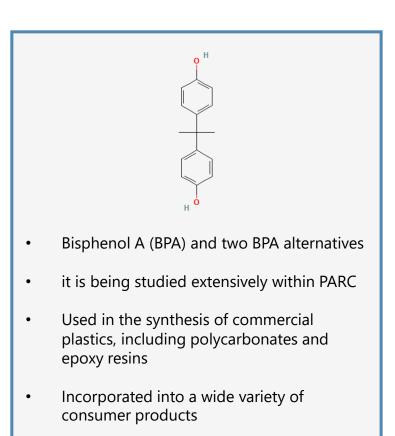
Postdoctoral Researcher at Empa



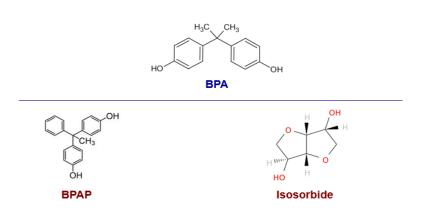
Safety and sustainability assessments to improve chemical and material management

- (synthetic) chemicals are present everywhere in our daily lives
- Many properties of these chemicals are unknown
- SSbD can be a proactive way to better manage chemicals (and materials) by assessing safety and sustainability
- PARC: developing a toolbox to facilitate the SSbD assessment

PARC SSbD Toolbox

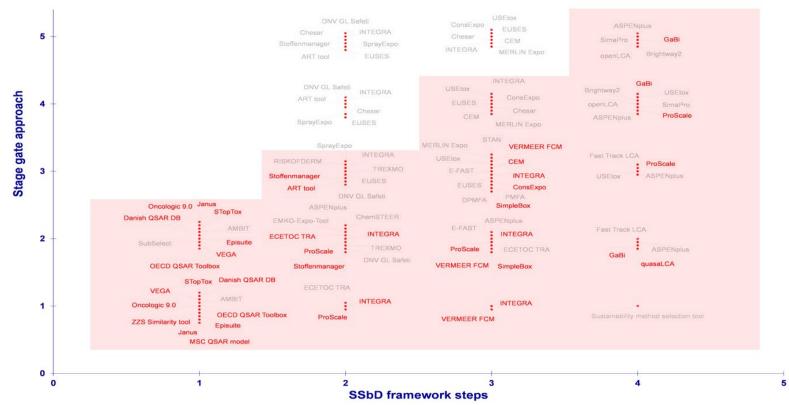

SSbD Assessment Framework (Caldeira et al., 2022)

Aim and selection of the case-study

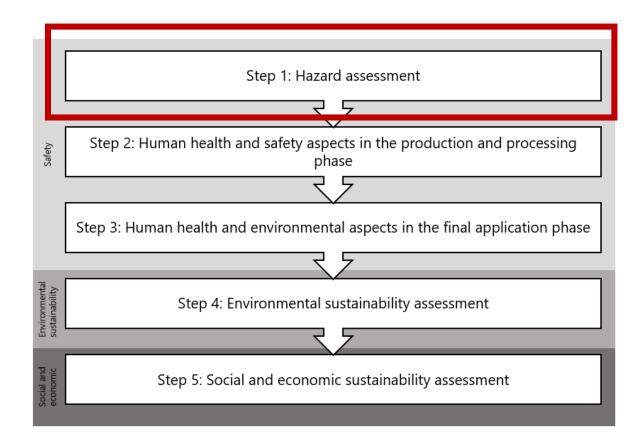

Aim

- Test different chemical structures
- Test the applicability of the tools in relation to different stages of innovation
- Understand the complexity of the tools, and their potential role in SSbD assessments
- Evaluate and understand how the tools predict impacts
- Discuss the prediction accuracy, for example

Tested structures and use scenarios



- Early stage assessment: only the chemical structure and the application of the substance are known.
- Late(r) stage assessment: experimental data available


The tools identified for the toolbox and used in the SSbD assessment

Tools covering different SSbD steps and stage gates

Step 1: Hazard assessment

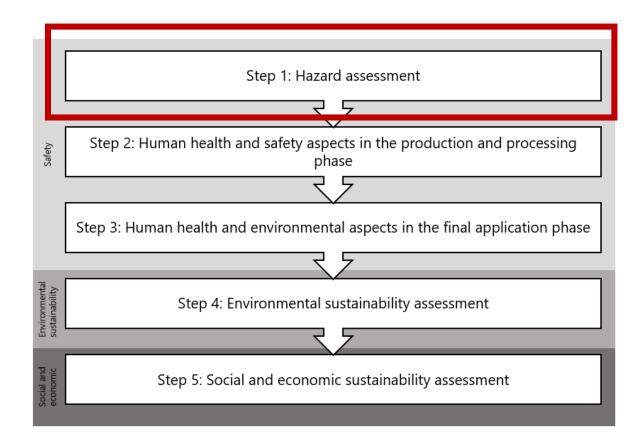
Tested tools

- Danish QSAR DB
- Janus
- EpiSuite v 4.10
- VEGA 1.2.3
- Oncologic 9.0
- OECD QSAR Toolbox
- STopTox

- Screening of defined hazard endpoints to identify chemicals that are inherently hazardous.
 - 1. Human health hazards
 - 2. Environmental hazards
 - 3. Physical hazards

Hazard assessment: scoring approach

	Human health hazards													
Chemicals	Carcinogenicity	Mutagenicity	Reproductive toxicity	ЕD (НН)	Respiratory sensitization	STOT-RE	Skin sensitization	Acute toxicity - oral	Acute toxicity - dermal	Acute toxicity - inhalation	Skin corrosion/irritation	Eye damage/irritation	Aspiration hazard	STOT-SE
BPA	NC	NC	Repr. 1B	POS	NC	NC	Skin Sens. 1	NC	NC	NC	NC	Eye Dam. 1	NC	STOT- SE 3
BPAP	NEG	NEG	POS	POS	POS	MISS	NC	NC	NC	NEG	NC	NC	NC	MISS
Isosorbide	NEG	NC	NC	NEG	NEG* POS**	NC	NC	NC	NC	NC	NC	NC	NC	MISS


* Negative prediction within the applicability domain of the model

** Positive prediction within the applicability domain of the model

- Not all required endpoints could be covered by using models only
- Guidance needs to be developed on how to integrate different results with each other
 - Conflicting results
 - Experimental and modelled data
 - Data gaps
- Better assessment needed of the uncertainty of both modelled and experimental data

Step 2: exposure and risk during processing and production

- Information requirements:
 - General physicochemical properties of the substance (molecular weight, vapor pressure), toxicological information:
 - Early innovation: QSAR results step 1 (hazard assessment)
 - Late(r) innovation: Experimental results
 - Information regarding the chemical production (PROCs)
 - Operational conditions (OCs)

Tested tools

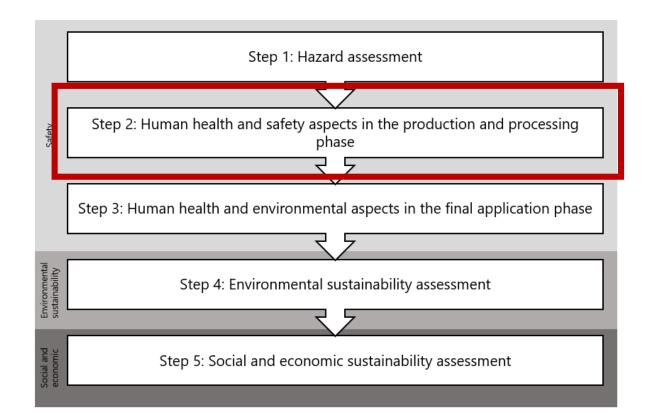
- ECETOC TRA
- INTEGRA

- Application scenarios:
 - BPA alternatives in polycarbonate used in reusable water bottles
 - BPA alternatives in epoxy resins in paint

	PC bottle production							
Human Health								Environment
CSs	PROC 6	PROC 8b	PROC 9	PROC 10	PROC 14	PROC 15	SSbD Score	ERC 5
BPA	1	1	1	0	1	1	1	0
BPAP	1	1	1	0	1	1	1	0
Isosorbide	1	3	3	1	3	3	2	3

Early stage innovation

Late(r) stage innovation


Production of PC Bottles								
Human Health							Environment	
CSs	PROC 6	PROC 8b	PROC 9	PROC 10	PROC 14	PROC 15	SSbD Score	ERC 5
BPA	1	1	1	1	1	1	1	2
BPAP	1	1	1	0	1	1	1	0
Isosorbide	3	3	3	3	3	3	3	3

Step 2: exposure and risk during processing and production

- SSbD scores during the early stages are lower compared to those in the later stages
 → ECETOC TRA can provide a conservative and basic exposure assessment
- Final results of exposure estimates and risk can be influenced by the type of tool or data used for their calculation
- Many of the QSAR predictions were characterized with low reliability

Step 3: risk to consumers and the environment

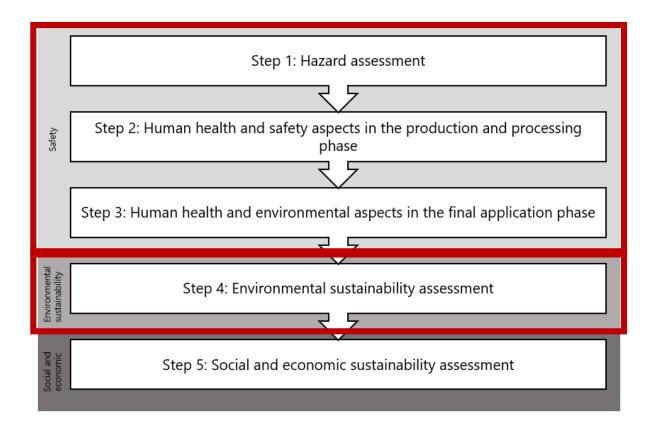
Requirements:

- Specific application: reusable water bottle
- Physicochemical, environmental fate and toxicological properties
 - Early innovation: QSAR results step 1 (hazard assessment)
 - Late(r) innovation: Experimental results

Tested tools

– INTEGRA

– Vermeer FCM


Step 3: risk to consumers and the environment

- Toxicological thresholds affect the final outcomes
- Difference between between risk in early and late innovation due to lower TDI values in late innovation
 - The application of QSAR predictions should be approached conservatively when there is no available data.
- Approach raises concerns about the accuracy and reliability of results

Method	Impact categories	Results				
GaBi: Screening LCA	 Acidification Climate change Ecotoxicity Eutrofication Human toxicity (cancer, non-cancer) Land use Ozone depletion Particulate matter Photochemical ozone transf. Fossil based resources Mineral and metals Water use 	 Solvent type in the production is heavily dominating in most of the impact categories Higher impacts in four impact categories for Isosorbide (biobased chemical) 				
QuasaLCA: specific information on production (based on ecoinvent v3.8 and published literature)	 Acidification Climate change Ecotoxicity Land use (urban) Land use (agriculture) Particulate matter Water use 	 Isosorbide plastic bottle has a lower EF Dishwashing is a major contributor to overall EF For BPA, production contributes significantly 				

Step 4: environmental sustainability assessment

- Conflicting results need to be further studied
- lack of data (LCIs) of chemicals
 - Large databases such as Ecoinvent only have a fraction of processes available for chemical production
 - Several methods to generate LCIs for chemicals have been developed but the quality of the result can vary widely

Some final thoughts

- By conducting the case study we have a better understanding of the applicability of different tools for SSbD assessments
- Most tools are easy to use, but the results are difficult to interpret
- Data to run the tools is limited
- How to balance complexity of chemical production and use vs. feasibility of the assessment
- Some other aspects should be addressed:
 - Uncertainty and reliability of the models and data
 - Incorporation of circular economy considerations
 - Comparison of chemicals that exist on different development levels

• ...

²³The case-study team

Tomas Rydberg, Anna Agalliadou, Chiara Battistelli, Emilio Benfenati, Cecilia Bossa, Evert Bouman, Émilien Bourgé, Swapnil Chavan, Maja Halling, Annabel Hill, Eleni lacovidou, Ivo lavicoli, Tomi Kanerva, Spyros Karakitsios, Achilleas Karakoltzidis, Veruscka Leso, Magnus Lofstedt, Foteini Nikiforou, Ulf Norinder, Bernd Nowack, Araceli Sánchez Jiménez, Denis Sarigiannis, Gianluca Selvestrel, Kirsi Siivola, Anezka Sharma, Vrishali Subramanian, Rosella Telaretti Leggieri, Martijn van Bodegraven, Joanke van Dijk, Jaco Westra, Ziye Zheng

Visit <u>eu-parc.eu</u>

24

