

Materials Science and Technology

Assessing supply disruption impacts along the supply chain within Life Cycle Sustainability Assessment – the SPOTTER approach applied to the Swiss Economy –

88th Discussion Forum on LCA "Frontiers in Life Cycle Sustainability Assessment – How can Life Cycle Thinking embrace the Triple Bottom Line?"
22 November 2024
ZHAW Wädenswil
Switzerland

<u>Marcus Berr</u>^{1,2}, Roland Hischier¹, Patrick Wäger¹ ¹Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland ²myclimate Foundation, Zurich, Switzerland

Agenda

Introduction SPOTTER Approach Results & Discussion

Conclusion & Outlook

Introduction

Supply disruptions may occur at each supply chain stage

myclimate shape our future

Criticality Assessment

Life Cycle Sustainability Assessment (LCSA)

Benefits of an integrated assessment

Experimental

Criticality assessment integrated into the LCSA framework

(Cimprich et al. 2019; Sonnemann et al. 2015)

Suitable approaches are still missing!

(Cimprich et al. 2017, 2018; Santillan et al. 2020)

(Bach et al. 2016; Sun et al. 2021)

...are not suitable for...

SPOTTER Approach

(«A<u>s</u>sessing potential su<u>p</u>ply disrupti<u>o</u>n impacts along <u>t</u>he supply chain in the shor<u>t</u>- and m<u>e</u>dium-term within the LCSA f<u>r</u>amework»)

Example of potential disruption in battery supply chain

Impact score calculation follows the principles of LCSA

Impact score calculation follows the principles of LCSA

Inventory flows are determined <u>upstream</u> the supply chain

myclimate

Impact score calculation follows the principles of LCSA

CF = *Supply disruption probability* * *Vulnerability*

Considered elements with SPOTTER

Considered elements with SPOTTER

Two possible types of analysis with SPOTTER

Results & Discussion

Hotspots for the Swiss economy (short-term)*

Impact score > 1% of Impact score_{total}

Examples of hotspots (based on data from the year 2020)

*mobility, energy and ICT sectors

Suitable risk mitigation measures could be...

Examples of hotspots (based on data from the year 2020)

*to be communicated to trade partners

20

ICEV: Conventional vehicle

Comparing the impacts of BEVs with impacts of ICEVs...

$$Impact\ score_{total} = \sum m * CF$$

...higher risks are identified for materials/products supply...

...but lower risks are identified for fuel supply

Context affects the interpretation of results

03.12.2024

23

Conclusion & Outlook

Summary and future research

- A potential integration of supply disruption impacts into the LCSA framework is demonstrated by the example of the SPOTTER approach.
- The application of SPOTTER is demonstrated on a case study of the Swiss economy.
- Flows of battery cells, cobalt, gallium and natural graphite are identified as hotspots.
- Lower supply risks are identified for electric vehicles compared to conventional vehicels.
- Besides its application on a country-level, SPOTTER could be applied in the context of a company-specific analysis.
- The supply chain modelling with SPOTTER could serve as a baseline for the inventory analysis of country-specific environmental and social LCA studies.

Questions?

Thank you for your attention!

Marcus Berr

E-mail: <u>marcus.berr@myclimate.org</u> Phone: +41 43 502 08 74 Consulting & Solutions department myclimate Foundation

myclimate Foundation Pfingstweidstrasse 10 8005 Zurich, Switzerland <u>www.myclimate.org</u>

Empa St. Gallen Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland https://www.empa.ch/web/s506

88th LCA Discussion Forum

References

Underlying articles:

- Berr, M., Beloin-Saint-Pierre, D., Hischier, R., Hool, A., Wäger, P., 2022. SPOTTER: Assessing supply disruption impacts along the supply chain within Life Cycle Sustainability Assessment. Cleaner Logistics and Supply Chain. 4, 100063. <u>https://doi.org/10.1016/j.clscn.2022.100063</u>.
- Berr, M., Hischier, R., Wäger, P., 2023. Assessing Short-Term Supply Disruption Impacts within Life Cycle Sustainability Assessment – a Case Study of Electric Vehicles. Environmental Science & Technology. <u>https://doi.org/10.1021/acs.est.3c05957</u>.
- Berr, M., Hischier, R., Wäger, P., 2024. Assessment of Short-Term Supply Disruption Impacts for the Swiss Mobility, Energy and ICT Sectors – Application of the SPOTTER approach. Journal of Cleaner Production. <u>https://doi.org/10.1016/j.jclepro.2024.143810</u>.

Images:

- <u>https://hdrei.org/pictures/wiki/File:Viktor-forgacs-FcDqdJUM6B4-unsplash.jpg</u> (Covid-19 virus image)
- <u>https://commons.wikimedia.org/wiki/File:Globcal_medium_resolution_globe.png</u> (Globe image)

Other Images have either been created by myself, taken from the three above-mentioned publications, copied from myclimate internal slides or licensed from Adobe Stock.

References

Literature:

- NRC, 2008. Minerals, Critical Minerals, and the US Economy. National Research Council of the National Academies, USA.
- UNEP/SETAC Life Cycle Initiative, 2011. Towards a Life Cycle Sustainability Assessment: Making Informed Choices on Products, in UNEP/SETAC Life Cycle Iniative (ed.), (Valdivia S, Ugaya CML, Sonnemann G, Hildenbrand J, editors edn.; Paris, France: United Nations Environment Programma (UNEP)).
- Cimprich, A., Bach, V., Helbig, C., Thorenz, A., Schrijvers, D., Sonnemann, G., Young, S.B., Sonderegger, T., Berger, M., 2019. Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product-level supply risk assessment. Journal of Industrial Ecology. 0 (0). <u>https://doi.org/10.1111/jiec.12865</u>.
- Sonnemann, G., Gemechu, E.D., Adibi, N., De Bruille, V., Bulle, C., 2015. From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. Journal of Cleaner Production. 94, 20-34. <u>https://doi.org/10.1016/j.jclepro.2015.01.082</u>.
- Bach, V., Berger, M., Henßler, M., Kirchner, M., Leiser, S., Mohr, L., Rother, E., Ruhland, K., Schneider, L., Tikana, L., Volkhausen, W., Walachowicz, F., Finkbeiner, M., 2016. Integrated method to assess resource efficiency – ESSENZ. Journal of Cleaner Production. 137, 118-30. <u>https://doi.org/10.1016/j.jclepro.2016.07.077</u>.
- Sun, X., Bach, V., Finkbeiner, M., Yang, J., 2021. Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China. Circular Economy and Sustainability. <u>https://doi.org/10.1007/s43615-021-00012-5</u>.
- Cimprich, A., Young, S.B., Helbig, C., Gemechu, E.D., Thorenz, A., Tuma, A., Sonnemann, G., 2017. Extension of geopolitical supply risk methodology: Characterization model applied to conventional and electric vehicles. Journal of Cleaner Production. 162, 754-63. <u>https://doi.org/10.1016/j.jclepro.2017.06.063</u>.
- Cimprich, A., Karim, K.S., Young, S.B., 2018. Extending the geopolitical supply risk method: material "substitutability" indicators applied to electric vehicles and dental X-ray equipment. The International Journal of Life Cycle Assessment. <u>https://doi.org/10.1007/s11367-017-1418-4</u>.